The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the c...The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.展开更多
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec...Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.展开更多
Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus...Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability.展开更多
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ...Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.展开更多
Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of res...Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of research.Yet,their stability remains a barrier to industrial application.This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells.By bulk and surface passivation,defect density is reduced,followed by a"passivation cleaning"using Apacl amino acid salt and isopropyl alcohol to refine film surface quality.Employing X-ray diffraction(XRD),scanning electron microscope(SEM),and atomic force microscopy(AFM),we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination,achieving 22.6%efficiency for perovskite solar cells with the composition Cs_(0.15)FA_(0.85)PbI_(3).Crucially,the stability of treated cells in long-term tests has been markedly enhanced,laying groundwork for industrial viability.展开更多
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P...Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.展开更多
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long...Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future.展开更多
Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-frie...Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.展开更多
Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 pero...Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 perovskite solution. PEA-MAPbI3 films show better pore filling into TiO2 scaffold that forms better contact, and induce longer exciton lifetime and higher quantum efficiency of photoinduced charge separation. As a result, the power conversion efficiency of PEA-MAPbI3 MPSCs is 37% higher than that of MAPbI3 MPSCs. And PEA-MAPbI3 MPSCs show excellent long-term stability that could keep 90% of origin power conversion efficiency for over 80 days in the air.展开更多
Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their co...Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their commercial applications, which are dominated by various chemical reactions of perovskite layers. Hence, a comprehensive illustration on the stability of perovskite films in PSCs is urgently needed. In this review article, chemical reactions of perovskite films under different environmental conditions(e.g., moisture,oxygen, light) and with charge transfer materials and metal electrodes are systematically elucidated. Effective strategies for suppressing the degradation reactions of perovskites, such as buffer layer introduction and additives engineering,are specified. Finally, conclusions and outlooks for this field are proposed. The comprehensive review will provide a guideline on the material engineering and device design for PSCs.展开更多
Owing to the combined features of sub-1.4 eV bandgap and all-inorganic composition,cesium tin–lead(Sn-Pb)triiodide perovskite is promising for approaching the Shockley-Queisser limit of solar cells while avoiding the...Owing to the combined features of sub-1.4 eV bandgap and all-inorganic composition,cesium tin–lead(Sn-Pb)triiodide perovskite is promising for approaching the Shockley-Queisser limit of solar cells while avoiding the use of volatile organic cations.But the low Sn(Ⅱ)stability in this perovskite remains a hurdle for delivering its theoretically attainable device performance.Herein we present a synthesis method of this perovskite based on an acetylhydrazine-incorporated antioxidative solution system.Mechanistic investigation shows that acetylhydrazine effectively reduces the oxidation of solution-phase Sn(Ⅱ)and meanwhile creates an electron-rich,protective nano-environment for solid-state Sn(Ⅱ)ions.These lead to high oxidation resistance of the final film as well as effective defect inhibition.The resultant solar cells demonstrate power conversion efficiencies up to 15.04%,the highest reported so far for inorganic perovskite devices with sub-1.4 eV bandgaps.Furthermore,the T_(90) lifetime of these devices can exceed 1000 hours upon light soaking in a nitrogen atmosphere,demonstrating the potential advantage when lower-bandgap perovskite solar cells go all-inorganic.展开更多
Two-dimensional(2D)/quasi-2D perovskite solar cells(PSCs)incorporating organic spacer cations exhibit appealing ambient stability in comparison with their 3D analogs.Most reported organic spacer cations are based on a...Two-dimensional(2D)/quasi-2D perovskite solar cells(PSCs)incorporating organic spacer cations exhibit appealing ambient stability in comparison with their 3D analogs.Most reported organic spacer cations are based on ammonium,whereas formamidinium(FA^(+))has been seldom applied despite that FA has been extensively used in high-efficiency 3D PSCs.Herein,a novel FA-based organic spacer cation,4-chloro-phenylformamidinium(CPFA^(+)),is applied in quasi-2D Ruddlesden-Popper(RP)PSCs for the first time,and methylammonium chloride(MACl)is employed to promote crystal growth and orientation of perovskite film,resulting in high power conversion efficiency(PCE)with improved stability.Upon incorporating CPFA+organic spacer cation and MACl additive,high-quality quasi-2D CPFA_(2)MA_(n-1)Pb_(n)(I_(0.857)Cl_(0.143))_(3n+1)(n=9)perovskite film forms,exhibiting improved crystal orientation,reduced trap state density,prolonged carrier lifetime and optimized energy level alignment.Consequently,the CPFA_(2)MA_(n-1)Pb_(n)(I_(0.857)Cl_(0.143))_(3n+1)(n=9)quasi-2D RP PSC devices deliver a highest PCE of 14.78%.Moreover,the un-encapsulated CPFA-based quasi-2D RP PSC devices maintain~80%of its original PCE after exceeding 2000 h storage under ambient condition,whereas the 3D MAPb I3counterparts retain only~45%of its original PCE.Thus,the ambient stability of quasi-2D RP PSC devices is improved obviously relative to its 3D MAPb I3counterpart.展开更多
The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphi...The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphipathic molecule Triton X100(Triton) is modified on the NiO_(x)surface.The hydrophilic chain of Triton as a Lewis base additive can coordinate with the Ni3+on the NiO_(x)surface which can passivate the interfacial defects and hinder the detrimental reactions at the NiO_(x)/perovskite interface.Additionally,the hydrophobic chain of Triton protrudes from the NiO_(x)surface to prevent moisture from penetrating into the NiO_(x)/perovskite interface.Consequently,the NiO_(x)/Triton-based devices(MAPbI3as absorbing layer) show superior moisture and thermal stability,retaining 88.4% and 64.3% of the initial power conversion efficiency after storage in air(40%-50% relative humidity(RH)) at 25 ℃ for 1070 h and in N2at 85℃ for 800 h,respectively.Moreover,the efficiency increases from 17.59% to 19.89% because of the passivation defect and enhanced hole-extraction capability.Besides,the NiO_(x)/Triton-based PSCs with Cs_(0.05)(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))3perovskite as the light-absorbing layer also exhibits better moisture and thermal stability compared to the control devices,indicating the viability of our strategies.Of particular note,a champion PCE of 22.35% and 20.46% was achieved for small-area(0.1 cm^(2)) and large-area(1.2 cm^(2)) NiO_(x)/Triton-based devices,respectively.展开更多
Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issu...Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issue,1-butyl-3-methylimidazolium trifluoro-methane-sulfonate(BMIMOTF) and its iodide counterpart(BMIMI) are utilized to modify the perovskite surface respectively.We find that BMIMI can change the perovskite surface,whereas BMIMOTF shows a nondestructive and more effective defect passivation,giving significantly reduced defect density and suppressed charge-carrier nonradiative recombination.This mainly attributes to the marked passivation efficacy of OTF-anion on V_Ⅰ and undercoordinated Pb^(2+),rather than BMIMI^(+) cation.Benefiting from the rational surface-modification of BMMIMOTF,the films exhibit an optimized energy level alignment,enhanced hydrophobicity and suppressed ion migration.Consequently,the BMIMOTF-modified devices achieve an impressive efficiency of 21.38% with a record open-circuit voltage of 1.195 V,which is among the best efficiencies reported for 2D PVSCs,and display greatly enhanced humidity and thermal stability.展开更多
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an effi...The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn^(2+)remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.展开更多
In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages inclu...In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.展开更多
To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adeq...To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMe TAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound(LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive(thioctic acid, TA) with spiro-OMe TAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMe TAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE(22.52%) with excellent device stability.展开更多
Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we ...Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we propose a transparent conducting oxide(TCO)and low-cost metal composite electrode to improve the stability of PSCs without sacrificing the efficiency.The TCO can block ion migrations and chemical reactions between the metal and perovskite,while the metal greatly enhances the conductivity of the composite electrode.As a result,composite electrode-PSCs achieved a power conversion efficiency(PCE)of 23.7%(certified 23.2%)and exhibited excellent stability,maintaining 95%of the initial PCE when applying a reverse bias of 4.0 V for 60 s and over 92%of the initial PCE after 1000 h continuous light soaking.This composite electrode strategy can be extended to different combinations of TCOs and metals.It opens a new avenue for improving the stability of PSCs.展开更多
Zinc Oxide(ZnO)has been extensively applied as electron transport material(ETM)in perovskite solar cells(PSCs)since the emergence of PSCs.However,some chemisorbed oxygen species on the surface of ZnO can cause the deg...Zinc Oxide(ZnO)has been extensively applied as electron transport material(ETM)in perovskite solar cells(PSCs)since the emergence of PSCs.However,some chemisorbed oxygen species on the surface of ZnO can cause the degradation of CH3NH3+(MA^(+))based perovskite.To avoid the destructive effect of ZnO,a facile solution strategy was proposed to produce a ZnS shell around the ZnO nanorods arrays(ZnO-NRs),i.e.ZnO@ZnS core-shell nanorods(ZnO-NRs@ZnS).The ZnO-NRs@ZnS cascade structure can not only facilitate carrier transport,but also enhance the stability of ZnO based PSCs.A power conversion efficiency(PCE)of 20.6%was finally yielded,which is the-state-of-the-art efficiency for PSCs with one-dimensional(1 D)ZnO electron transport materials(ETMs).Moreover,over 90%of the initial efficiency was retained for the unencapsulated device with ZnO-NRs@ZnS ETMs at 85℃for 500 h,demonstrating excellent stability.This work provides a simple and efficient avenue to simultaneously enhance the photovoltaic(PV)performance and stability of 1 D ZnO nanostructure-based PSCs.展开更多
基金finically supported by the National Natural Science Foundation of China(62350054,12374379,12174152,12304462)the Foundation of National Key Laboratory(***202302011)。
文摘The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.
基金This study was supported by the National Nat-ural Science Foundation of China(No.22379105)the Natural Sci-ence Foundation of Shanxi Province(Nos.20210302123110 and 202303021211059)the Open Fund Project of Ningxia Sinostar Display Material Co.,Ltd.
文摘Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.
基金supported by the General Program of Chongqing Natural Science Foundation(CSTB2022NSCQMSX1227 and CSTB2022NSCQ-MSX0459)the supports from the Fundamental Research Funds for the Central Universities(SWU-XDJH202314)。
文摘Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability.
基金financial support from various entities,including the Foundation of Anhui Science and Technology University[HCYJ202201]the Anhui Science and Technology University’s Student Innovation and Entrepreneurship Training Program[S202310879115,202310879053]+4 种基金the Key Project of Natural Science Research in Anhui Science and Technology University[2021ZRZD07]the Chuzhou Science and Technology Project[2021GJ002]the Anhui Province Key Research and Development Program[202304a05020085]the Natural Science Research Project of Anhui Educational Committee[2023AH051877]The Opening Project of State Key Laboratory of Advanced Technology for Float Glass[2020KF06,2022KF06]。
文摘Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.
基金supported by the National Natural Science Foundation of China(61874008).
文摘Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of research.Yet,their stability remains a barrier to industrial application.This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells.By bulk and surface passivation,defect density is reduced,followed by a"passivation cleaning"using Apacl amino acid salt and isopropyl alcohol to refine film surface quality.Employing X-ray diffraction(XRD),scanning electron microscope(SEM),and atomic force microscopy(AFM),we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination,achieving 22.6%efficiency for perovskite solar cells with the composition Cs_(0.15)FA_(0.85)PbI_(3).Crucially,the stability of treated cells in long-term tests has been markedly enhanced,laying groundwork for industrial viability.
基金funding from National Science Foundation of China(52202337 and 22178015)the Young Taishan Scholars Program of Shandong Province(tsqn202211082)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB051)Independent Innovation Research Project of China University of Petroleum(East China)(22CX06023A).
文摘Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
基金the supports from National Key Research and Development Program of China(Grant No.2018YFB1500103)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)+3 种基金Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)the Fundamental Research Funds for the Central Universities,Nankai University(Grant Nos.63191736,ZB19500204)Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Scie nce Foundation(No.2020T130317)。
文摘Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future.
基金supported by the National Key Research and Development Program of China (2020YFA07150002018YFB1503100)the Suzhou Fangsheng FS-300 for research support。
文摘Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.
基金support by the National Nature Science Foundation of China(91433203,61564003,61474049,61774050,51502141)the Ministry of Science and Technology of China(2015AA034601)+2 种基金the Guangxi Natural Science Foundation(2015GXNSFGA139002)the Bagui Scholars Program of Guangxi,Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials,China Postdoctoral Science Foundation(2016M600588)the Project of Guangxi Graduate Education(YCSW2017148)
文摘Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 perovskite solution. PEA-MAPbI3 films show better pore filling into TiO2 scaffold that forms better contact, and induce longer exciton lifetime and higher quantum efficiency of photoinduced charge separation. As a result, the power conversion efficiency of PEA-MAPbI3 MPSCs is 37% higher than that of MAPbI3 MPSCs. And PEA-MAPbI3 MPSCs show excellent long-term stability that could keep 90% of origin power conversion efficiency for over 80 days in the air.
基金financially supported by the Research Grants Council (RGC) of Hong Kong, China (Project No. 15306822)Innovation and Technology Commission of Hong Kong, China (Innovation and Technology Fund-Guangdong-Hong Kong Technology Cooperation Funding Scheme (ITF-TCFS), Project No. GHP/042/19SZ)+2 种基金financially supported by the Research Institute of Intelligent Wearable Systems of the Hong Kong Polytechnic University, Hong Kong, China (Project Code: CD46)supported by the funding for Projects of Strategic Importance of the Hong Kong Polytechnic University (Project Code: 1-ZE2X)supported by Shenzhen Science and Technology Innovation Commission, (Project No.: SGDX20210823103401011)。
文摘Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their commercial applications, which are dominated by various chemical reactions of perovskite layers. Hence, a comprehensive illustration on the stability of perovskite films in PSCs is urgently needed. In this review article, chemical reactions of perovskite films under different environmental conditions(e.g., moisture,oxygen, light) and with charge transfer materials and metal electrodes are systematically elucidated. Effective strategies for suppressing the degradation reactions of perovskites, such as buffer layer introduction and additives engineering,are specified. Finally, conclusions and outlooks for this field are proposed. The comprehensive review will provide a guideline on the material engineering and device design for PSCs.
基金supported by the NSFC(U2001217,21972006)the Shenzhen Peacock Plan(KQTD2016053015544057)+4 种基金the Shenzhen-Hong Kong Innovation Circle United Research Project(SGLH20180622092406130)the Shenzhen Fundamental Research Program(JCYJ20190813105205501)the Research Fund Program of Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices(2019B121203003)the Early Career Scheme(22300221)from the Hong Kong Research Grant Council and the start-up grants,Initiation Grant Faculty Niche Research Areas(IG-FNRA)2020/21,Interdisciplinary Matching Scheme 2020/21,startup grants of the Hong Kong Baptist University(HKBU)the China Postdoctoral Science Foundation(2021M690193)。
文摘Owing to the combined features of sub-1.4 eV bandgap and all-inorganic composition,cesium tin–lead(Sn-Pb)triiodide perovskite is promising for approaching the Shockley-Queisser limit of solar cells while avoiding the use of volatile organic cations.But the low Sn(Ⅱ)stability in this perovskite remains a hurdle for delivering its theoretically attainable device performance.Herein we present a synthesis method of this perovskite based on an acetylhydrazine-incorporated antioxidative solution system.Mechanistic investigation shows that acetylhydrazine effectively reduces the oxidation of solution-phase Sn(Ⅱ)and meanwhile creates an electron-rich,protective nano-environment for solid-state Sn(Ⅱ)ions.These lead to high oxidation resistance of the final film as well as effective defect inhibition.The resultant solar cells demonstrate power conversion efficiencies up to 15.04%,the highest reported so far for inorganic perovskite devices with sub-1.4 eV bandgaps.Furthermore,the T_(90) lifetime of these devices can exceed 1000 hours upon light soaking in a nitrogen atmosphere,demonstrating the potential advantage when lower-bandgap perovskite solar cells go all-inorganic.
基金supported by the National Key Research and Development Program of China(2017YFA0402800)the National Natural Science Foundation of China(51925206,U1932214)。
文摘Two-dimensional(2D)/quasi-2D perovskite solar cells(PSCs)incorporating organic spacer cations exhibit appealing ambient stability in comparison with their 3D analogs.Most reported organic spacer cations are based on ammonium,whereas formamidinium(FA^(+))has been seldom applied despite that FA has been extensively used in high-efficiency 3D PSCs.Herein,a novel FA-based organic spacer cation,4-chloro-phenylformamidinium(CPFA^(+)),is applied in quasi-2D Ruddlesden-Popper(RP)PSCs for the first time,and methylammonium chloride(MACl)is employed to promote crystal growth and orientation of perovskite film,resulting in high power conversion efficiency(PCE)with improved stability.Upon incorporating CPFA+organic spacer cation and MACl additive,high-quality quasi-2D CPFA_(2)MA_(n-1)Pb_(n)(I_(0.857)Cl_(0.143))_(3n+1)(n=9)perovskite film forms,exhibiting improved crystal orientation,reduced trap state density,prolonged carrier lifetime and optimized energy level alignment.Consequently,the CPFA_(2)MA_(n-1)Pb_(n)(I_(0.857)Cl_(0.143))_(3n+1)(n=9)quasi-2D RP PSC devices deliver a highest PCE of 14.78%.Moreover,the un-encapsulated CPFA-based quasi-2D RP PSC devices maintain~80%of its original PCE after exceeding 2000 h storage under ambient condition,whereas the 3D MAPb I3counterparts retain only~45%of its original PCE.Thus,the ambient stability of quasi-2D RP PSC devices is improved obviously relative to its 3D MAPb I3counterpart.
基金supported by the National Key Research and Development Program of China(2018YFA0208701)the National Natural Science Foundation of China(21773308)+7 种基金the Research Funds of Renmin University of China(2017030013,201903020 and 20XNH059)the Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS) at the National University of Singapore(NUS)supported by NUSthe National Research Foundation Singapore(NRF)the Energy Market Authority of Singapore(EMA)the Singapore Economic Development Board(EDB)the financial support from the China Scholarship Council(CSC) funding。
文摘The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphipathic molecule Triton X100(Triton) is modified on the NiO_(x)surface.The hydrophilic chain of Triton as a Lewis base additive can coordinate with the Ni3+on the NiO_(x)surface which can passivate the interfacial defects and hinder the detrimental reactions at the NiO_(x)/perovskite interface.Additionally,the hydrophobic chain of Triton protrudes from the NiO_(x)surface to prevent moisture from penetrating into the NiO_(x)/perovskite interface.Consequently,the NiO_(x)/Triton-based devices(MAPbI3as absorbing layer) show superior moisture and thermal stability,retaining 88.4% and 64.3% of the initial power conversion efficiency after storage in air(40%-50% relative humidity(RH)) at 25 ℃ for 1070 h and in N2at 85℃ for 800 h,respectively.Moreover,the efficiency increases from 17.59% to 19.89% because of the passivation defect and enhanced hole-extraction capability.Besides,the NiO_(x)/Triton-based PSCs with Cs_(0.05)(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))3perovskite as the light-absorbing layer also exhibits better moisture and thermal stability compared to the control devices,indicating the viability of our strategies.Of particular note,a champion PCE of 22.35% and 20.46% was achieved for small-area(0.1 cm^(2)) and large-area(1.2 cm^(2)) NiO_(x)/Triton-based devices,respectively.
基金financially supported by the National Natural Science Foundation of China (62174021 and 62104028)the Creative Research Groups of the National Natural Science Foundation of Sichuan Province (2023NSFSC1973)+7 种基金the Sichuan Science and Technology Program (MZGC20230008)the Natural Science Foundation of Sichuan Province (2022NSFSC0899)the China Postdoctoral Science Foundation (2021M700689)the Grant SCITLAB (20012) of Intelligent Terminal Key Laboratory of Sichuan ProvinceFundamental Research Funds for the Central Universities (ZYGX2019J054)the Guangdong Basic and Applied Basic Research Foundation (2019A1515110438)sponsored by the University of Kentuckythe Sichuan Province Key Laboratory of Display Science and Technology。
文摘Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issue,1-butyl-3-methylimidazolium trifluoro-methane-sulfonate(BMIMOTF) and its iodide counterpart(BMIMI) are utilized to modify the perovskite surface respectively.We find that BMIMI can change the perovskite surface,whereas BMIMOTF shows a nondestructive and more effective defect passivation,giving significantly reduced defect density and suppressed charge-carrier nonradiative recombination.This mainly attributes to the marked passivation efficacy of OTF-anion on V_Ⅰ and undercoordinated Pb^(2+),rather than BMIMI^(+) cation.Benefiting from the rational surface-modification of BMMIMOTF,the films exhibit an optimized energy level alignment,enhanced hydrophobicity and suppressed ion migration.Consequently,the BMIMOTF-modified devices achieve an impressive efficiency of 21.38% with a record open-circuit voltage of 1.195 V,which is among the best efficiencies reported for 2D PVSCs,and display greatly enhanced humidity and thermal stability.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61775091,21671160,51761145048,21833009)Natural Science Foundation of Shenzhen Innovation Committee(Nos.JCYJ20180504165851864)the Shenzhen Key Laboratory Project(No.ZDSYS201602261933302)。
文摘The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn^(2+)remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.
文摘In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.
基金supported by the National Natural Science Foundation of China (21975028, U21A20172 and 22011540377)the Special Key Projects (2022-JCJQ-ZD-224-12)。
文摘To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMe TAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound(LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive(thioctic acid, TA) with spiro-OMe TAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMe TAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE(22.52%) with excellent device stability.
基金supported by National Natural Science Foundation of China(No.21872080)National Key Research and Development Program of China(2022YFB3803304)+2 种基金supported by Tsinghua University Initiative Scientific Research Program(20221080065,20223080044)The State Key Laboratory of Power System and Generation Equipment(Nos.SKLD21Z03 and SKLD20M03)the Chinese Thousand Talents Program for Young Professionals.
文摘Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we propose a transparent conducting oxide(TCO)and low-cost metal composite electrode to improve the stability of PSCs without sacrificing the efficiency.The TCO can block ion migrations and chemical reactions between the metal and perovskite,while the metal greatly enhances the conductivity of the composite electrode.As a result,composite electrode-PSCs achieved a power conversion efficiency(PCE)of 23.7%(certified 23.2%)and exhibited excellent stability,maintaining 95%of the initial PCE when applying a reverse bias of 4.0 V for 60 s and over 92%of the initial PCE after 1000 h continuous light soaking.This composite electrode strategy can be extended to different combinations of TCOs and metals.It opens a new avenue for improving the stability of PSCs.
基金support from the National Natural Science Foundation of China(Grant Nos.21773218)the key research and development projects of Sichuan province(Grant No.2017GZ0052)+2 种基金the talents of science and technology innovation in Sichuan province(Grant No.2018RZ0119)the China Postdoctoral Science Foundation(Grant No.2019 M653485)Anshan Hifichem Co.Ltd.
文摘Zinc Oxide(ZnO)has been extensively applied as electron transport material(ETM)in perovskite solar cells(PSCs)since the emergence of PSCs.However,some chemisorbed oxygen species on the surface of ZnO can cause the degradation of CH3NH3+(MA^(+))based perovskite.To avoid the destructive effect of ZnO,a facile solution strategy was proposed to produce a ZnS shell around the ZnO nanorods arrays(ZnO-NRs),i.e.ZnO@ZnS core-shell nanorods(ZnO-NRs@ZnS).The ZnO-NRs@ZnS cascade structure can not only facilitate carrier transport,but also enhance the stability of ZnO based PSCs.A power conversion efficiency(PCE)of 20.6%was finally yielded,which is the-state-of-the-art efficiency for PSCs with one-dimensional(1 D)ZnO electron transport materials(ETMs).Moreover,over 90%of the initial efficiency was retained for the unencapsulated device with ZnO-NRs@ZnS ETMs at 85℃for 500 h,demonstrating excellent stability.This work provides a simple and efficient avenue to simultaneously enhance the photovoltaic(PV)performance and stability of 1 D ZnO nanostructure-based PSCs.