期刊文献+
共找到1,988篇文章
< 1 2 100 >
每页显示 20 50 100
Multifunctional interfacial molecular bridge enabled by an aggregation-induced emission strategy for enhancing efficiency and UV stability of perovskite solar cells
1
作者 Shuhang Bian Yuqi Wang +13 位作者 Fancong Zeng Zhongqi Liu Bin Liu Yanjie Wu Long Shao Yongzhi Shao Huan Zhang Shuainan Liu Jin Liang Xue Bai Lin Xu Donglei Zhou Biao Dong Hongwei Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期588-595,I0013,共9页
The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the c... The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs. 展开更多
关键词 perovskite solar cells Aggregation-induced emission Defect passivation EFFICIENCY UV stability
下载PDF
Improving the operational stability of perovskite solar cells with cesium-doped graphene oxide interlayer
2
作者 Masaud Almalki Katerina Anagnostou +15 位作者 Konstantinos Rogdakis Felix T.Eickemeyer Mostafa Othman Minas M.Stylianakis Dimitris Tsikritzis Anwar Q.Alanazi Nikolaos Tzoganakis Lukas Pfeifer Rita Therisod Xiaoliang Mo Christian M.Wolff Aïcha Hessler-Wyser Shaik M.Zakeeruddin Hong Zhang Emmanuel Kymakis Michael Grätzel 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期483-490,共8页
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t... Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination. 展开更多
关键词 perovskite solar cells Doped graphene oxide Graphene related material Long-term operational stability
下载PDF
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
3
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu Changfeng Si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 Hole-transport materials Inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
Interfacial modification using the cross-linkable tannic acid for highly-efficient perovskite solar cells with excellent stability
4
作者 Xing Gao Lirong Rong +6 位作者 Fei Wu Yen-Hung Lin Ye Zeng Junhong Tan Rongxing He Cheng Zhong Linna Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期236-244,共9页
Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus... Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability. 展开更多
关键词 Tannic acid Defect passivation lons diffusion HYDROPHILIC stability perovskite solar cells
下载PDF
Enhancing the crystallinity and stability of perovskite solar cells with 4-tert-butylpyridine induction for efficiency exceeding 24%
5
作者 You Liu Lishuang Zheng +15 位作者 Kuanxiang Zhang Kun Xu Weicheng Xie Jue Zhang Yulu Tian Tianyuan Liu Hanzhong Xu Ruoming Ma Wei Huang Jiahui Chen Jusheng Bao Chen Chen Yongsheng Zhou Xuchun Wang Junming Chen Jungan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期1-7,I0001,共8页
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ... Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module. 展开更多
关键词 4-tert-butylpyridine Film crystallization perovskite solar cells Power conversion efficiency stability improvement
下载PDF
Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning
6
作者 Kunyang Ge Chunjun Liang 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期74-83,共10页
Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of res... Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of research.Yet,their stability remains a barrier to industrial application.This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells.By bulk and surface passivation,defect density is reduced,followed by a"passivation cleaning"using Apacl amino acid salt and isopropyl alcohol to refine film surface quality.Employing X-ray diffraction(XRD),scanning electron microscope(SEM),and atomic force microscopy(AFM),we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination,achieving 22.6%efficiency for perovskite solar cells with the composition Cs_(0.15)FA_(0.85)PbI_(3).Crucially,the stability of treated cells in long-term tests has been markedly enhanced,laying groundwork for industrial viability. 展开更多
关键词 perovskite solar cells stability surface passivation washing process photoelectric conversion efficiency nonradiative recombination
下载PDF
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
7
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers Molecular structure Design strategies
下载PDF
Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells 被引量:2
8
作者 Bingbing Chen Pengyang Wang +3 位作者 Ningyu Ren Renjie Li Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期89-103,共15页
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long... Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future. 展开更多
关键词 atomic layer deposition tin dioxide additional buffer layer efficiency and stability inverted perovskite solar cells
下载PDF
Enhancing the stability of planar perovskite solar cells by green and inexpensive cellulose acetate butyrate 被引量:1
9
作者 Bo Xiao Yongxin Qian +5 位作者 Xin Li Yang Tao Zijun Yi Qinghui Jiang Yubo Luo Junyou Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期259-265,I0007,共8页
Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-frie... Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells. 展开更多
关键词 Planar perovskite solar cells Long-term stability Organic polymer Well-matched energy level Charge transportation and extraction
下载PDF
Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using PEAI as an additive 被引量:2
10
作者 Cong Xua Zheling Zhang +4 位作者 Yue Hu Yusong Sheng Pei Jiang Hongwei Han Jian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期764-768,共5页
Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 pero... Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 perovskite solution. PEA-MAPbI3 films show better pore filling into TiO2 scaffold that forms better contact, and induce longer exciton lifetime and higher quantum efficiency of photoinduced charge separation. As a result, the power conversion efficiency of PEA-MAPbI3 MPSCs is 37% higher than that of MAPbI3 MPSCs. And PEA-MAPbI3 MPSCs show excellent long-term stability that could keep 90% of origin power conversion efficiency for over 80 days in the air. 展开更多
关键词 Phenethylamine Additive Hole-conductor-free Mesoscopic perovskite solar cells stability
下载PDF
Review on Chemical Stability of Lead Halide Perovskite Solar Cells 被引量:3
11
作者 Jing Zhuang Jizheng Wang Feng Yan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期220-253,共34页
Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their co... Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their commercial applications, which are dominated by various chemical reactions of perovskite layers. Hence, a comprehensive illustration on the stability of perovskite films in PSCs is urgently needed. In this review article, chemical reactions of perovskite films under different environmental conditions(e.g., moisture,oxygen, light) and with charge transfer materials and metal electrodes are systematically elucidated. Effective strategies for suppressing the degradation reactions of perovskites, such as buffer layer introduction and additives engineering,are specified. Finally, conclusions and outlooks for this field are proposed. The comprehensive review will provide a guideline on the material engineering and device design for PSCs. 展开更多
关键词 perovskite solar cells Chemical reactions DEFECTS Degradation Device stability
下载PDF
Antioxidative solution processing yields exceptional Sn(Ⅱ) stability for sub-1.4 eV bandgap inorganic perovskite solar cells 被引量:2
12
作者 Mingyu Hu Gaopeng Wang +9 位作者 Qinghong Zhang Jue Gong Zhou Xing Jinqiang Gao Jian Wang Peng Zeng Shizhao Zheng Mingzhen Liu Yuanyuan Zhou Shihe Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期487-494,I0014,共9页
Owing to the combined features of sub-1.4 eV bandgap and all-inorganic composition,cesium tin–lead(Sn-Pb)triiodide perovskite is promising for approaching the Shockley-Queisser limit of solar cells while avoiding the... Owing to the combined features of sub-1.4 eV bandgap and all-inorganic composition,cesium tin–lead(Sn-Pb)triiodide perovskite is promising for approaching the Shockley-Queisser limit of solar cells while avoiding the use of volatile organic cations.But the low Sn(Ⅱ)stability in this perovskite remains a hurdle for delivering its theoretically attainable device performance.Herein we present a synthesis method of this perovskite based on an acetylhydrazine-incorporated antioxidative solution system.Mechanistic investigation shows that acetylhydrazine effectively reduces the oxidation of solution-phase Sn(Ⅱ)and meanwhile creates an electron-rich,protective nano-environment for solid-state Sn(Ⅱ)ions.These lead to high oxidation resistance of the final film as well as effective defect inhibition.The resultant solar cells demonstrate power conversion efficiencies up to 15.04%,the highest reported so far for inorganic perovskite devices with sub-1.4 eV bandgaps.Furthermore,the T_(90) lifetime of these devices can exceed 1000 hours upon light soaking in a nitrogen atmosphere,demonstrating the potential advantage when lower-bandgap perovskite solar cells go all-inorganic. 展开更多
关键词 Inorganic perovskites Ideal-bandgap perovskite solar cells Tin defects Efficiency
下载PDF
Phenylformamidinium-enabled quasi-2D Ruddlesden-Popper perovskite solar cells with improved stability 被引量:1
13
作者 Xingcheng Li Wanpei Hu +8 位作者 Yanbo Shang Xin Yu Xue Wang Weiran Zhou Mingtai Wang Qun Luo Chang-Qi Ma Yalin Lu Shangfeng Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期680-688,I0018,共10页
Two-dimensional(2D)/quasi-2D perovskite solar cells(PSCs)incorporating organic spacer cations exhibit appealing ambient stability in comparison with their 3D analogs.Most reported organic spacer cations are based on a... Two-dimensional(2D)/quasi-2D perovskite solar cells(PSCs)incorporating organic spacer cations exhibit appealing ambient stability in comparison with their 3D analogs.Most reported organic spacer cations are based on ammonium,whereas formamidinium(FA^(+))has been seldom applied despite that FA has been extensively used in high-efficiency 3D PSCs.Herein,a novel FA-based organic spacer cation,4-chloro-phenylformamidinium(CPFA^(+)),is applied in quasi-2D Ruddlesden-Popper(RP)PSCs for the first time,and methylammonium chloride(MACl)is employed to promote crystal growth and orientation of perovskite film,resulting in high power conversion efficiency(PCE)with improved stability.Upon incorporating CPFA+organic spacer cation and MACl additive,high-quality quasi-2D CPFA_(2)MA_(n-1)Pb_(n)(I_(0.857)Cl_(0.143))_(3n+1)(n=9)perovskite film forms,exhibiting improved crystal orientation,reduced trap state density,prolonged carrier lifetime and optimized energy level alignment.Consequently,the CPFA_(2)MA_(n-1)Pb_(n)(I_(0.857)Cl_(0.143))_(3n+1)(n=9)quasi-2D RP PSC devices deliver a highest PCE of 14.78%.Moreover,the un-encapsulated CPFA-based quasi-2D RP PSC devices maintain~80%of its original PCE after exceeding 2000 h storage under ambient condition,whereas the 3D MAPb I3counterparts retain only~45%of its original PCE.Thus,the ambient stability of quasi-2D RP PSC devices is improved obviously relative to its 3D MAPb I3counterpart. 展开更多
关键词 perovskite solar cells Organic spacer Formamidinium RUDDLESDEN-POPPER Quasi-2D perovskite
下载PDF
Application of an amphipathic molecule at the NiO_(x)/perovskite interface for improving the efficiency and long-term stability of the inverted perovskite solar cells
14
作者 Guibin Shen Hongye Dong +4 位作者 Fan Yang Xin Ren Ng Xin Li Fen Lin Cheng Mu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期454-462,I0013,共10页
The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphi... The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphipathic molecule Triton X100(Triton) is modified on the NiO_(x)surface.The hydrophilic chain of Triton as a Lewis base additive can coordinate with the Ni3+on the NiO_(x)surface which can passivate the interfacial defects and hinder the detrimental reactions at the NiO_(x)/perovskite interface.Additionally,the hydrophobic chain of Triton protrudes from the NiO_(x)surface to prevent moisture from penetrating into the NiO_(x)/perovskite interface.Consequently,the NiO_(x)/Triton-based devices(MAPbI3as absorbing layer) show superior moisture and thermal stability,retaining 88.4% and 64.3% of the initial power conversion efficiency after storage in air(40%-50% relative humidity(RH)) at 25 ℃ for 1070 h and in N2at 85℃ for 800 h,respectively.Moreover,the efficiency increases from 17.59% to 19.89% because of the passivation defect and enhanced hole-extraction capability.Besides,the NiO_(x)/Triton-based PSCs with Cs_(0.05)(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))3perovskite as the light-absorbing layer also exhibits better moisture and thermal stability compared to the control devices,indicating the viability of our strategies.Of particular note,a champion PCE of 22.35% and 20.46% was achieved for small-area(0.1 cm^(2)) and large-area(1.2 cm^(2)) NiO_(x)/Triton-based devices,respectively. 展开更多
关键词 perovskite solar cells NiO_(x) Defect passivation Long-term stability Amphipathic molecule
下载PDF
Boosting efficiency and stability of 2D alternating cation perovskite solar cells via rational surface-modification: Marked passivation efficacy of anion
15
作者 Hualin Zheng Xuefeng Peng +9 位作者 Tingxi Chen Ting Zhang Shihao Yuan Lei Wang Feng Qian Jiang Huang Xiaodong Liu Zhi David Chen Yanning Zhang Shibin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期354-362,共9页
Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issu... Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issue,1-butyl-3-methylimidazolium trifluoro-methane-sulfonate(BMIMOTF) and its iodide counterpart(BMIMI) are utilized to modify the perovskite surface respectively.We find that BMIMI can change the perovskite surface,whereas BMIMOTF shows a nondestructive and more effective defect passivation,giving significantly reduced defect density and suppressed charge-carrier nonradiative recombination.This mainly attributes to the marked passivation efficacy of OTF-anion on V_Ⅰ and undercoordinated Pb^(2+),rather than BMIMI^(+) cation.Benefiting from the rational surface-modification of BMMIMOTF,the films exhibit an optimized energy level alignment,enhanced hydrophobicity and suppressed ion migration.Consequently,the BMIMOTF-modified devices achieve an impressive efficiency of 21.38% with a record open-circuit voltage of 1.195 V,which is among the best efficiencies reported for 2D PVSCs,and display greatly enhanced humidity and thermal stability. 展开更多
关键词 2D ACI perovskite solar cells Charge-carrier nonradiative recombination Surface defects passivation Energy level alignment Ionic migration stability
下载PDF
Enhanced efficiency and stability in Sn-based perovskite solar cells with secondary crystallization growth
16
作者 Zhixin Jin Bin-Bin Yu +7 位作者 Min Liao Di Liu Jingwei Xiu Zheng Zhang Efrat Lifshitz Jiang Tang Haisheng Song Zhubing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期414-421,共8页
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an effi... The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn^(2+)remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs. 展开更多
关键词 Tin based perovskite solar cells Secondary crystallization growth Amine chloride Non-irradiative recombination Energy band levels matching
下载PDF
Advances in the Fabrication of Perovskite Solar Cells by Roll-to-Roll Technology
17
作者 ZHAO Jiawei CHEN Haolin +1 位作者 LUO Ni LIU Zhenguo 《材料导报》 北大核心 2025年第1期98-114,共17页
In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages inclu... In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field. 展开更多
关键词 perovskite solar cells roll-to-roll technology substrate scalable deposition technology performance optimization
下载PDF
Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells 被引量:3
18
作者 Ying Zhang Chenxiao Zhou +7 位作者 Lizhi Lin Fengtao Pei Mengqi Xiao Xiaoyan Yang Guizhou Yuan Cheng Zhu Yu Chen Qi Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期305-316,共12页
To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adeq... To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMe TAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound(LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive(thioctic acid, TA) with spiro-OMe TAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMe TAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE(22.52%) with excellent device stability. 展开更多
关键词 perovskite solar cell Hole transport layer GELATION Humidity stability Aggregation of LiTFSI
下载PDF
Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability 被引量:2
19
作者 Chaofan Jiang Junjie Zhou +6 位作者 Hang Li Liguo Tan Minghao Li Wolfgang Tress Liming Ding Michael Grätzel Chenyi Yi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期225-235,共11页
Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we ... Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we propose a transparent conducting oxide(TCO)and low-cost metal composite electrode to improve the stability of PSCs without sacrificing the efficiency.The TCO can block ion migrations and chemical reactions between the metal and perovskite,while the metal greatly enhances the conductivity of the composite electrode.As a result,composite electrode-PSCs achieved a power conversion efficiency(PCE)of 23.7%(certified 23.2%)and exhibited excellent stability,maintaining 95%of the initial PCE when applying a reverse bias of 4.0 V for 60 s and over 92%of the initial PCE after 1000 h continuous light soaking.This composite electrode strategy can be extended to different combinations of TCOs and metals.It opens a new avenue for improving the stability of PSCs. 展开更多
关键词 Composite electrode perovskite solar cells stability Reverse bias Characterization
下载PDF
A facile solution processed ZnO@ZnS core–shell nanorods arrays for high-efficiency perovskite solar cells with boosted stability 被引量:2
20
作者 Kun Chen Weijian Tang +4 位作者 Yu Chen Ruihan Yuan Yinhua Lv Wenjuan Shan Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期553-560,I0014,共9页
Zinc Oxide(ZnO)has been extensively applied as electron transport material(ETM)in perovskite solar cells(PSCs)since the emergence of PSCs.However,some chemisorbed oxygen species on the surface of ZnO can cause the deg... Zinc Oxide(ZnO)has been extensively applied as electron transport material(ETM)in perovskite solar cells(PSCs)since the emergence of PSCs.However,some chemisorbed oxygen species on the surface of ZnO can cause the degradation of CH3NH3+(MA^(+))based perovskite.To avoid the destructive effect of ZnO,a facile solution strategy was proposed to produce a ZnS shell around the ZnO nanorods arrays(ZnO-NRs),i.e.ZnO@ZnS core-shell nanorods(ZnO-NRs@ZnS).The ZnO-NRs@ZnS cascade structure can not only facilitate carrier transport,but also enhance the stability of ZnO based PSCs.A power conversion efficiency(PCE)of 20.6%was finally yielded,which is the-state-of-the-art efficiency for PSCs with one-dimensional(1 D)ZnO electron transport materials(ETMs).Moreover,over 90%of the initial efficiency was retained for the unencapsulated device with ZnO-NRs@ZnS ETMs at 85℃for 500 h,demonstrating excellent stability.This work provides a simple and efficient avenue to simultaneously enhance the photovoltaic(PV)performance and stability of 1 D ZnO nanostructure-based PSCs. 展开更多
关键词 Zinc Oxide nanorods arrays Core-cell structure Electron transport material perovskite solar cells stability
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部