期刊文献+
共找到306篇文章
< 1 2 16 >
每页显示 20 50 100
Dynamics and control of a solar collector system for near Earth object deflection
1
作者 Shen-Ping Gong,Jun-Feng Li and Yun-Feng Gao School of Aerospace,Tsinghua University,Beijing 100084,China 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2011年第2期205-224,共20页
A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects.We investigate the dynamics and control of a solar collector system including a main collector (MC) an... A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects.We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC).The MC is used to collect the sunlight to its focal point,where the SC is placed and directs the collected light to an asteroid.Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path.First,the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled.Secondly,the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors.Finally,the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor.The results show that the solar collector is much more efficient with respect to deflection capability. 展开更多
关键词 minor planets asteroids -- techniques: miscellaneous -- solar collector
下载PDF
Thermodynamic Analysis and Optimization of Flat Plate Solar Collector Using TiO_(2)/Water Nanofluid
2
作者 Firas F.Qader Falah Z.Mohammed Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期61-73,共13页
To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tub... To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tubes,and aluminum heat-absorbing plates.Glass wool insulation minimized heat loss.A 0.5% TiO_(2)/Water nanofluid was created using a mechanical and ultrasonic stirrer.Results showed that solar radiation increased thermal efficiency until midday,reaching 48.48% for water and 51.23% for the nanofluid.With increasing mass flow rates from 0.0045 kg/s to 0.02 kg/s,thermal efficiency improved from 16.26% to 47.37% for water and from 20.65% to 48.76% for the nanofluid.Filtered water provided 380 W and 395 W of energy in March and April,while the nanofluid increased it to 395 W and 415 W during these months.Mass flow generated energy,and the Reynolds number raised entropy.The noon exergy efficiency for nanofluids was 50%-55%,compared to 30% for water.At noon,the broken exergy measured 877.53 W for the nanofluid and 880.12 W for water.In Kirkuk,Iraq,the 0.5% TiO_(2)/Water nanofluid outperformed water in solar collectors. 展开更多
关键词 ENERGY EXERGY entropy generation NANOFLUID flat plate solar collector
下载PDF
A Study on the Performances of Solar Air Collectors Having a Hemispherical Dimple on the Absorber Plate
3
作者 Shuilian Li Fan Zeng Xinli Wei 《Fluid Dynamics & Materials Processing》 EI 2024年第5期939-955,共17页
In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynam... In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynamics aspects.By comparing and analyzing the light paths of the protrusion and the dimple,it can be concluded that when sunlight shines on the dimple,it is reflected and absorbed multiple times,whereas for the sunlight shining on the protrusion,there is no secondary reflection or absorption of light.When the lighting area and the properties of the surfaces are the same,the absorption rate of the dimple is 10.3 percentage points higher than that of the protrusion.In the range of Reynolds number from 3000 to 11000,numerical simulations about the effects of the relative height(e/Dh=0.033–0.1)and relative spacing(p/e=4.5–8.5)of protrusions on air heat transfer and flow resistance show that,in terms of comprehensive evaluation coefficient(PF),the best relative height is 0.085,when the relative spacing is 5.A correlation of Nu and f with Re,e/Dh and p/e is obtained by linear regression of the results,in order to provide a useful reference for the design and optimization of this kind of solar air collector. 展开更多
关键词 Heat transfer hemispherical protrusion DIMPLE solar air collector CORRELATION
下载PDF
Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids
4
作者 Ritesh Singh Abhishek Gupta +2 位作者 Akshoy Ranjan Paul Bireswar Paul Suvash C.Saha 《Energy Engineering》 EI 2024年第4期835-848,共14页
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC... A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid. 展开更多
关键词 Parabolic trough solar collector(PTSC) magnetic nanofluid(MNF) heat transfer convective heat transfer coefficient(HTC) thermal enhancement factor(TEF)
下载PDF
An Energy Production System Powered by Solar Heat with Biogas Dry Reforming Reactor and Solid Oxide Fuel Cell
5
作者 Akira Nishimura Ryotaro Sato Eric Hu 《Smart Grid and Renewable Energy》 CAS 2023年第5期85-106,共22页
In this paper, an energy system consisting of solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) has been proposed. The heat produced from the concentrating solar collector is used to drive... In this paper, an energy system consisting of solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) has been proposed. The heat produced from the concentrating solar collector is used to drive a biogas dry reforming reactor in order to produce H<sub>2</sub> as a fuel for SOFC, in such as system. The aim of this study is to clarify the impact of climate data on the performance of solar collector with various sizes/designs. The temperature of heat transfer fluid produced by the solar collector is calculated by adopting the climate data for Nagoya city in Japan in 2021. The amount of H<sub>2</sub> produced from the biogas dry reforming reactor and the power generated by SOFC were simulated. The results show the temperature of heat transfer fluid (T<sub>fb</sub>) and T<sub>fb</sub> ratio (a) based on the length of absorber (dx) = 1 m have a peak near the noon following the trend of solar intensity (I). Results also revealed that a increases with increase in dx. It is found that the differences of T<sub>fb</sub> and a between dx = 2 m and dx = 3 m are larger than those between dx = 1 m and dx = 2 m. It is revealed that T<sub>fb</sub> and a are higher in spring and summer. dx = 4 m is the optimum length of solar absorber. The amount of H<sub>2</sub> produced from the biogas dry reforming reactor as well as the power generated by SOFC is the highest in August, resulting that it is prefer to produce H<sub>2</sub> and to generate SOFC in summer. 展开更多
关键词 solar collector Fluid Temperature Climate Data Biogas Dry Reforming H2 Production SOFC
下载PDF
Life cycle cost analysis of new FRP based solar parabolic trough collector hot water generation system 被引量:1
6
作者 A. VALAN ARASU T. SORNAKUMAR 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期416-422,共7页
Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre... Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91 °C, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems. 展开更多
关键词 热-水传递系统 生物圈 环境系统 环境保护
下载PDF
Solar Thermal Systems Performances versus Flat Plate Solar Collectors Connected in Series
7
作者 Khaled Zelzouli Amenallah Guizani +1 位作者 Ramzi Sebai Chakib Kerkeni 《Engineering(科研)》 2012年第12期881-893,共13页
This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collector... This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collectors and thermal storage tank, 2) the second, a Solar Indirect Hot Water in which we added an external heat exchanger of constant effectiveness to the first system. The mass flow rate by a collector is fixed to 0.04 Kg·s–1 and the total number of collectors is adjusted to 60. For the first system, the maximum average water temperature within the tank in a typical day in summer and annual performances are calculated by varying the number of collectors connected in series. For the second, this paper shows the detailed analysis of water temperature within the storage and annual performances by varying the mass flow rate on the cold side of the heat exchanger and the number of collectors in series on the hot side. It is shown that the stratification within the storage is strongly influenced by mass flow rate and the connections between collectors. It is also demonstrated that the number of collectors that can be connected in series is limited. The optimization of the mass flow rate on cold side of the heat exchanger is seen to be an important factor for the energy saving. 展开更多
关键词 Thermal Energy FLAT Plate collectors STRATIFICATION solar HEATING systems
下载PDF
Enhanced efficiency in Concentrated Parabolic Solar Collector(CPSC) with a porous absorber tube filled with metal nanoparticle suspension
8
作者 Mohammad Hatami Jiafeng Geng Dengwei Jing 《Green Energy & Environment》 SCIE 2018年第2期129-137,共9页
In this study, effects of different nanoparticles and porosity of absorber tube on the performance of a Concentrating Parabolic Solar Collector(CPSC) were investigated. A section of porous-filled absorber tube was mod... In this study, effects of different nanoparticles and porosity of absorber tube on the performance of a Concentrating Parabolic Solar Collector(CPSC) were investigated. A section of porous-filled absorber tube was modeled as a semi-circular cavity under the solar radiation which is filled by nanofluids and the governing equations were solved by FlexPDE numerical software. The effect of four physical parameters, nanoparticles type, nanoparticles volume fraction(φ), Darcy number(Da) and Rayleigh number(Ra), on the Nusselt number(Nu) was discussed. It turns out that Cu nanoparticle is the most suitable one for such solar collectors, compared to the commonly used Fe_3O_4, Al_2O_3, TiO_2.With the increased addition of Cu nanoparticles all the parameters φ, Da and Ra shows a significant increase against the Nu, indicates the enhanced heat transfer in such cases. As a result, low concentration of Cu nanoparticle suspension combined with porous matrix was supposed to be beneficial for the performance enhancement of concentrating parabolic solar collector. 展开更多
关键词 Concentrating parabolic solar collector Porous absorber tube NANOFLUID Nusselt number Finite Element Method
下载PDF
Numerical Investigation and Optimization of a Flat Plate Solar Collector Operating with Cu/CuO/Al_(2)O_(3)–Water Nanofluids
9
作者 Youssef Belkassmi Kamal Gueraoui +2 位作者 Lahoucine El maimouni Najem Hassanain Omar Tata 《Transactions of Tianjin University》 EI CAS 2021年第1期64-76,共13页
Nanofluids are a potential alternative to significantly improving the performance of heat transfer applications. In this work, a numerical analysis to examine the eff ect of dispersing copper(Cu), copper oxide(CuO), a... Nanofluids are a potential alternative to significantly improving the performance of heat transfer applications. In this work, a numerical analysis to examine the eff ect of dispersing copper(Cu), copper oxide(CuO), and aluminum(Al2O3) nanoparticles in pure water on the performance of a flat plate solar collector(FPSC) and a numerical model was proposed. The influence of the nanofluid type on the thermal efficiency was critically investigated and discussed. The eff ect of the mass flow rate on the performance was also analyzed and discussed. Based on correlations of the thermophysical properties of nanofluids, a sensitivity analysis was used to analyze the impact of the nanoparticles on the base fluid. The results indicate that the performance of the FPSC with Cu/water nanofluid was better than that of FPSCs using CuO/water or Al2O3/water nanofluids. When the mass flow rate of the nanofluids was 8.0 L/min, the efficiency of the FPSC was much greater than those at the flow rates of 5.0 L/min and 2.0 L/min. Mean enhancements in thermal efficiency of 4.44%, 4.27%, and 4.21% were observed when 2.0 L/min was applied using Cu/water, Cu O/water, and Al2O3/water nanofluids, respectively. Improvements in thermal efficiency of 2.76%, 2.53%, and 2.47% occurred when 8.0 L/min was applied. 展开更多
关键词 Flat plate solar collector solar energy Thermal efficiency Nanofluids Al_2O_3/water Cu/water CuO/water
下载PDF
Highly efficient energy harvest via external rotating magnetic field for oil based nanofluid direct absorption solar collector
10
作者 Debing Wang Wenwen Liang +5 位作者 Zhiheng Zheng Peiyu Jia Yunrui Yan Huaqing Xie Lingling Wang Wei Yu 《Green Energy & Environment》 SCIE CSCD 2021年第2期298-307,共10页
Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticl... Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticles obstructs their large-scale application. In this work, a new method of using magnetic nanofluids in DASCs is proposed. By this method, not only high-quality energy is got as well as the problems of blockage and corrosion in heat exchanger are well avoided. The result shows that the maximum temperature can reach 98℃ under 3 solar irradiations and the photothermal conversion efficiency can be further increased by 12.8% when the concentration is 500 ppm after adding an external rotating magnetic field. The highest viscosity of working fluid reduced by 21% when the concentration is 500 ppm at 95℃ after separating the Fe_(3)O_(4)@C nanoparticles from the nanofluids via magnetic separation technology. Meanwhile, the obtained pure base liquids with high temperature flow to heat exchanger, which also reduces the flow resistance in pipeline and avoids the problems such as blockage and corrosion in heat exchanger. This research promotes a new way for the efficient utilization of solar energy. 展开更多
关键词 Direct absorption solar collector Magnetic Fe_(3)O_(4)@C-oil nanofluids Magnetic separation technology High-quality energy
下载PDF
Investigation on Evaluation of a Solar Intermittent Refrigeration System for Ice Production with Ammonia/Calcium Chloride and Activated 被引量:1
11
作者 Hamid R. Goshayeshi Mehdi Gewad Hojat Nazari 《Energy and Power Engineering》 2015年第10期433-439,共7页
Experimental results of an intermittent solar absorption cooling system using parabolic collector are presented in this paper. The system used 6 kg of ammonia as refrigerant, 6 kg of calcium chloride as absorbent and ... Experimental results of an intermittent solar absorption cooling system using parabolic collector are presented in this paper. The system used 6 kg of ammonia as refrigerant, 6 kg of calcium chloride as absorbent and 2 kg activated carbon as a solvent. The generator temperature was found to be 105°C. The system could produce ice at &ndash;16°C on the average. These are the most advanced results for a solar ice maker so far. All these successful achievements will speed up the commercial processing of a solar ice maker. 展开更多
关键词 INTERMITTENT Absorption Cooling system solar Energy PARABOLIC collector Solid ABSORBENT
下载PDF
Energy and Cost Analysis of Processing Flat Plate Solar Collectors
12
作者 Mamdouh El Haj Assad Ali Khosravi +2 位作者 Mohammad AlShabi Bassam Khuwaileh Abdul-Kadir Hamid 《Energy Engineering》 EI 2021年第3期447-458,共12页
In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxi... In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission. 展开更多
关键词 Life cycle solar collector renewable energy solar thermal CO_(2)emission economic analysis
下载PDF
Proposal of a Solar Thermal Power Plant at Low Temperature Using Solar Thermal Collectors
13
作者 Patrick Lindecker 《Energy and Power Engineering》 CAS 2022年第8期343-386,共44页
To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa... To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season. 展开更多
关键词 Power Plant solar Thermal solar Energy Renewable Energy Low Temperature solar collectors Electric Power Generation Desalinated Water
下载PDF
Flat Panel Solar Thermoelectric System Size Optimisation at Different Vacuum Levels
14
作者 Kazuz Ramadan 《Open Journal of Energy Efficiency》 2015年第4期53-60,共8页
A systematic experimental investigation to understand the effect of heat loss and the thermoelectric aspect ratio (cross sectional area and length) on a flat plate solar thermoelectric system performance was carried o... A systematic experimental investigation to understand the effect of heat loss and the thermoelectric aspect ratio (cross sectional area and length) on a flat plate solar thermoelectric system performance was carried out. The investigation involved a series of experiments on systems with 4 different sizes of thermoelectric generators, and it was tested in 5 different vacuum levels during the steady-state. The detailed experimental investigation provided a substantial amount of data, which revealed that the system performance of both heat and electricity power were improved when the heat lost was minimised. The system’s performance strongly depended on the aspect ratio of the thermoelectric generators. This finding might have a significant impact on the cost of the system by saving the user’s and the manufacturer’s time in examining different TEGs with different aspect ratios in order to get the optimum size optimisation of the hybrid system, as well as reduce the manufacturing cost. 展开更多
关键词 Flat ROOF Top solar collector Hybrid solar THERMOELECTRIC system The Optimal Heat and Electric Power SEEBECK Effect ASPECT Ratio Vacuum Levels
下载PDF
An Evaluation to the Performance of Evacuated Tube Solar Heaters for Arid and Hot Areas
15
作者 Asaad H.Sayer Samah Hussein Kadhim Hameed B.Mahood 《Energy Engineering》 EI 2023年第3期587-596,共10页
Solar energy applications could be the best alternative to the conventional fuels for the purposes of domestic,water and space heating and some industries in the sunny,arid,and hot areas.In the present study,the perfo... Solar energy applications could be the best alternative to the conventional fuels for the purposes of domestic,water and space heating and some industries in the sunny,arid,and hot areas.In the present study,the performance of an evacuated tube solar heater for water heating for months of February and March was experimentally investigated.This was performed in a hot and arid area(Nasiriya City,South of Iraq).A solar heater with ten evacuated tube solar collectors with a capacity of 100 liter was used in the experiments.Each evacuated tube had a length of 1.8m with an outside diameter of 8 cm.It was observed that for the two selected months,water temperature of the solar heater reached a maximum more than 70°C during sunny days with no heat extraction from the tank of the solar heater.Moreover,heat was extracted from the solar collector with four different flowrates 0.5,0.75,1,and 1.25 l/min,respectively.The results showed that temperature of the solar heater behaved differently from the static situation.When the heat extraction begun,there was a gradual and noticeable decrease in the water temperature of the heater.The observed decrease was slight with the lowest flowrate(0.25 l/m)and becomes sharp with the highest flowrate(1.25 l/min).However,water temperature of the solar heater remained higher than 40°C for the investigated flowrates except the case of 1.25 l/min.The results showed that evacuated tube solar heater can work efficiently in arid and hot areas in winter and spring seasons when the conditions of solar radiation are suitable. 展开更多
关键词 solar energy evacuated tubes solar collectors
下载PDF
Arrangement of Multirow Solar Collector Array on Limited Roof Width
16
作者 PU Shaoxuan XIA Chaofeng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第4期76-82,共7页
At the limited roof north-south (N-S) width of a building, for the array with multirow collectors based on no shading at winter solstice noon and sloped at latitude, this paper studied the shading and the radiant en... At the limited roof north-south (N-S) width of a building, for the array with multirow collectors based on no shading at winter solstice noon and sloped at latitude, this paper studied the shading and the radiant energy striking on solar collector array. Based on Kunming solar radiation data, the annual and monthly solar radiant energy striking on multi-array collectors was analyzed and estimated, from no shading to partial shading by adding 1-3 collector row, at the slopes of 10°, 15°, 20°, 25°, 30°, 35° and 40°, respectively. The results showed that properly increasing the row number by reducing the slope of collectors was reasonable in order to get more annual radiant energy. Adding 1 row at 10° of slope was economical for Kunming, based on the 5-row array at 25°. And adding collector row by 20% at 10° of slope could increase the radiant energy striking on the array by 19%. 展开更多
关键词 limited roof width solar water heating system multirow collector array optimizing design
下载PDF
Theoretical and Experimental Investigations of Solar Heating Systems at Specified Output Conditions of Hot Water
17
作者 W. Tadros M. Saadeldin S.A. Hassan 《Journal of Energy and Power Engineering》 2011年第9期842-847,共6页
关键词 控制输出 供热系统 实验 太阳能 热水 计算机程序 数学工具 数据获得
下载PDF
计及AA-CAES与PTC集成的综合能源系统运行优化与性能分析 被引量:1
18
作者 吴迪 刘奥 +4 位作者 龚弟鑫 马帆帆 马立 韩中合 刘树华 《动力工程学报》 CAS CSCD 北大核心 2024年第1期138-147,156,共11页
为进一步发挥综合能源系统的多能互补优势,提出一种计及先进绝热压缩空气储能(AA-CAES)与槽式太阳能集热器(PTC)集成的综合能源系统(IES-PTC-CAES)优化运行策略。首先,对AA-CAES、PTC以及系统中其他设备进行分析并建立相应模型;进而以... 为进一步发挥综合能源系统的多能互补优势,提出一种计及先进绝热压缩空气储能(AA-CAES)与槽式太阳能集热器(PTC)集成的综合能源系统(IES-PTC-CAES)优化运行策略。首先,对AA-CAES、PTC以及系统中其他设备进行分析并建立相应模型;进而以经济性、环保性和能效性为优化目标,以设备运行的关键参数为优化变量,基于分时电价建立了协同优化策略,并通过K-means算法将模拟出的典型年负荷聚类为典型日负荷;最终,使用并行式的遗传算法对系统进行寻优,得到不同目标下IES-PTC-CAES的最优运行策略。结果表明:与参考系统相比,IES-PTC-CAES系统经济目标下总成本降低了14.61万元,环保目标下二氧化碳排放量减少了6194.38 kg。 展开更多
关键词 先进绝热压缩空气储能 槽式太阳能集热器 综合能源系统 遗传算法 协同优化
下载PDF
抛物面槽式太阳能集热器球形接头测试系统的研制与应用
19
作者 董军 汤建方 +2 位作者 臧春城 徐立 王志峰 《发电技术》 CSCD 2024年第2期291-298,共8页
球形接头是抛物面槽式太阳能集热器的关键部件,针对球形接头易发生运转卡涩和导热油泄漏问题,研制了一套球形接头性能测试系统。该测试系统可以实现球形接头在旋转、摆转或旋摆联动模式下,以及在导热油温度达393℃和压力达4.1 MPa工况... 球形接头是抛物面槽式太阳能集热器的关键部件,针对球形接头易发生运转卡涩和导热油泄漏问题,研制了一套球形接头性能测试系统。该测试系统可以实现球形接头在旋转、摆转或旋摆联动模式下,以及在导热油温度达393℃和压力达4.1 MPa工况条件下的加速寿命测试。以导热油为传热流体,开展了球形接头在导热油温度为393℃和压力为2.3 MPa工况条件,以及温度、压力变化条件下的性能测试研究,分析了球形接头在模拟12年寿命期的扭矩特性和密封性能,验证了该测试系统运行的稳定性和可靠性,并且关键技术参数的控制精度和测量精度满足使用要求,为球形接头的性能评价提供了技术支撑。 展开更多
关键词 太阳能热发电 抛物面槽式太阳能集热器 球形接头 测试系统 扭矩特性 密封性能 加速寿命 性能测试
下载PDF
高寒地区平板热管式太阳能集热系统热性能研究
20
作者 刘霜 刘耀 +2 位作者 邱云峰 王亚辉 郭枭 《内蒙古工业大学学报(自然科学版)》 2024年第1期56-62,共7页
基于呼和浩特地区高寒气候条件,搭建两组完全一致的平板热管式太阳能集热系统,通过实验对比分析太阳辐射强度、传热工质流量、集热板表面积尘等因素对集热器瞬时集热效率以及系统热性能的影响。结果表明,在同等外界条件下,集热器的集热... 基于呼和浩特地区高寒气候条件,搭建两组完全一致的平板热管式太阳能集热系统,通过实验对比分析太阳辐射强度、传热工质流量、集热板表面积尘等因素对集热器瞬时集热效率以及系统热性能的影响。结果表明,在同等外界条件下,集热器的集热效率随着工质流量的增加而增大,集热效率与太阳辐射强度变化趋势相近,随积尘密度的增加,集热板表面积尘导致系统的得热量减少,集热性能下降。 展开更多
关键词 平板热管式太阳能集热系统 太阳辐射强度 工质流量 积尘 集热效率
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部