期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Peak Shaving Strategy of Concentrating Solar Power Generation Based on Multi-Time-Scale and Considering Demand Response
1
作者 Lei Fang Haiying Dong +1 位作者 Xiaofei Zhen Shuaibing Li 《Energy Engineering》 EI 2024年第3期661-679,共19页
According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s... According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified. 展开更多
关键词 Peak shaving strategy concentrating solar power multi-time-scale demand-side response rolling optimization
下载PDF
Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells
2
作者 崔敏 陈诺夫 邓金祥 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期283-288,共6页
A metal plate cooling model for 400~ single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were ... A metal plate cooling model for 400~ single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were analyzed in detail. It is shown that the temperature of the solar cells decreased sharply at the beginning, with the increase in the thickness of the metal plate, and then changed more smoothly. When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker, the temperature of the solar cell basically stabilized at about 53℃. Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably. The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively, and demonstrated the superiority of A1 material for the cooling system. Furthermore, considering cost reduction, space holding and the stress of the system, we optimized the structural design of the metal plate. The simulated results can be referred to the design of the structure for the metal plate. Finally, a method to devise the structure of the metal plate for single concentrator solar cells was given. 展开更多
关键词 metal plate MODELING concentrator solar cells COOLING
下载PDF
Thermal modeling optimization and experimental validation for a single concentrator solar cell system with a heat sink
3
作者 崔敏 陈诺夫 +1 位作者 邓金祥 刘立英 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期456-461,共6页
A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance ... A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7 ~C and 36.3 ~C respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells. 展开更多
关键词 heat sink concentrator solar cell thermal model COOLING
下载PDF
Multi-aiming Strategy Design for Quadruple Prism Shaped Central Receiver in Solar Power Tower System 被引量:2
4
作者 Wenjun Huang Yingmei Qi +2 位作者 Fuxing Yi Dewen Li Hao Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期223-230,共8页
For solar power tower technology, the improvement of interception efficiency of heliostat field and the extension of central receiver's life time are two technical difficulties. To the receiver, higher interceptio... For solar power tower technology, the improvement of interception efficiency of heliostat field and the extension of central receiver's life time are two technical difficulties. To the receiver, higher interception efficiency means more thermal shocks and stronger stresses of high temperatures mainly contribute to the reduction of receiver's life time. To address these problems,a semi-random distribution strategy is proposed to select the best aiming point of the heliostat, and the distribution of onedimensional array arranged on the centerline of the receiver is carried out for further optimization. It is shown by simulation that through our optimization the temperature distribution on the receiver surface becomes much more uniform while maintaining acceptable interception efficiency. 展开更多
关键词 Concentrated solar power(CSP) distribution in one-dimensional array interception efficiency multi-aiming strategy quadruple prism shaped receiver
下载PDF
Combinations of Solar Concentrators with Agricultural Plants
5
作者 Ernst Kussul Tetyana Baydyk +2 位作者 Nestor García Graciela Velasco Herrera Airam Verónica Curtidor López 《Journal of Environmental Science and Engineering(B)》 2020年第5期168-181,共14页
A new trend involving the combination of solar concentrators and agricultural plants on the same piece of land offers the possibility of realizing both electricity generation and a good crop harvest.Authors analyze th... A new trend involving the combination of solar concentrators and agricultural plants on the same piece of land offers the possibility of realizing both electricity generation and a good crop harvest.Authors analyze this situation for different countries,including Mexico,and based on authors’experience regarding the development of new solar concentrator prototypes,authors’primary objective was to describe the development of compact,light,and inexpensive solar concentrator prototypes that can be collocated on horizontal roofs.Authors’second objective was to investigate the combination of such solar concentrator prototypes with agricultural plants on the same field.Thus,several studies related to the combination of renewable energy generation and agricultural crops were reviewed.Many such systems involving the combination of PV(Photovoltaic)panels with different types of vegetables exist in the USA,France(lettuce production),Japan(tomato production),India(aloe and corn),northern Italy(maize),Spain and México. 展开更多
关键词 solar concentrator agricultural plant flat triangular mirror
下载PDF
Glass-compatible and self-powered temperature alarm system by temperature-responsive organic manganese halides via backward energy transfer process
6
作者 Pengfei Xia Fan Liu +4 位作者 Yuru Duan Xuefang Hu Changgui Lu Shuhong Xu Chunlei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期188-194,I0006,共8页
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h... A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day. 展开更多
关键词 Luminescent solar concentrators Organic manganese halides Perovskite-polymer compositefilms Self-powered temperature alarm system Backward energy transfer process
下载PDF
Research progress on protective coatings against molten nitrate salts for thermal energy storage in concentrating solar power plants
7
作者 HOU Wenjie Maria Elena Navarro Rivero +4 位作者 PAN Jin ZOU Boyang Benjamin Grégoire Anabel Palacios DING Yulong 《Baosteel Technical Research》 CAS 2023年第4期1-16,共16页
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten... Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications. 展开更多
关键词 anticorrosive coating high temperature molten salt concentrated solar power thermal energy storage
下载PDF
Improving photoreduction of CO2 with water to CH4 in a novel concentrated solar reactor 被引量:2
8
作者 Sisi Han Yinfei Chen +1 位作者 Stéphane Abanades Zekai Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期743-749,共7页
COphotoreduction is an attractive process which allows the storage of solar energy and synthesis of solar fuels. Many different photocatalytic systems have been developed, while the alternative photo-reactors are stil... COphotoreduction is an attractive process which allows the storage of solar energy and synthesis of solar fuels. Many different photocatalytic systems have been developed, while the alternative photo-reactors are still insufficiently investigated. In this work, photoreduction of COwith HO into CHwas investigated in a modified concentrating solar reactor, using TiOand Pt/TiOas the catalysts. The TiOand Pt/TiOsamples were extensively characterized by different techniques including powder X-ray diffraction(XRD), Nadsorption/desorption and UV–vis absorption. The catalytic performance of the TiOand Pt/TiOsamples in the gas phase was evaluated under unconcentrated and concentrated Xe-lamp light and nature solar light with different concentrating ratios. Various parameters of the reaction system and the catalysts were investigated and optimized to maximize the catalytic performance of COreduction system. Compared with the normal light irradiation, the TiOand Pt/TiOsamples show higher photocatalytic activity(about 6–7 times) for reducing COinto CHunder concentrated Xe-lamp light and nature solar light. In the range of experimental light intensity, it is found that the concentration of the light makes it suitable for the catalytic reaction, and increases the utilization efficiency of the TiOand Pt/TiOsamples while does not decrease the quantum efficiency. 展开更多
关键词 CO2 photoreduction CH4 Concentrating solar reactor Concentrating ratio
下载PDF
Natural gas pyrolysis in double-walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source 被引量:1
9
作者 Stphane Abanades Stefania Tescari +1 位作者 Sylvain Rodat Gilles Flamant 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期1-8,共8页
The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating ... The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating source are carried out to validate this concept. The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time. Simulations are performed to predict the conversion rate of CH4 at the reactor outlet, and are consistent with experimental tendencies. A solar reactor prototype featuring four independent double-walled tubes is then developed. The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy. The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window. The gas composition at the reactor outlet, the chemical conversion of CH4, and the yield to H2 are determined with respect to reaction temperature, inlet gas flow-rates, and feed gas composition. The longer the gas residence time, the higher the CH4 conversion and H2 yield, whereas the lower the amount of acetylene. A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms), A temperature increase from 1870 K to 1970 K does not improve the H2 yield. 展开更多
关键词 METHANE hydrogen thermal cracking plasma concentrated solar energy tubular reactor
下载PDF
Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators
10
作者 Rui Cheng Xin Huang +3 位作者 Tingting Zhang Jiazhuang Guo Jian Yu Su Chen 《Chinese Chemical Letters》 SCIE CAS 2024年第8期437-442,共6页
Facile and efficient method for constructing carbon dots(CDs)with narrow full width at half maximum(FWHM)is a major challenge in the field,and researches on regulating the FWHM of CDs are also rare and scarce.In this ... Facile and efficient method for constructing carbon dots(CDs)with narrow full width at half maximum(FWHM)is a major challenge in the field,and researches on regulating the FWHM of CDs are also rare and scarce.In this work,we delved into the synthesis of CDs with narrow fluorescence emission FWHM(NFEF-CDs)in the m-phenylenediamine(m-PD)/ethanol system,utilizing solid superacid resin as cata-lyst with solvothermal method.The resulting NFEF-CDs exhibit a photoluminescent(PL)emission peak at 521 nm with a narrow FWHM of 41 nm,an absolute PL quantum yield(QY)of 80%,and display excitation-independent PL behavior.Through comprehensive characterization,we identified the protonation of edge amino on NFEF-CDs as the key factor in achieving the narrow FWHM.Subsequently,we validated the broad applicability of solid superacid resins as catalysts for synthesizing CDs with narrow FWHM in the m-PD/ethanol system.Finally,we utilized a self-leveling method to prepare NFEF-CDs film on the surface of poly(methyl methacrylate)(PMMA)substrate and investigated the solid-state fluorescence properties of NFEF-CDs as well as their performance as luminescence solar concentrator(LSC)for photovoltaic conver-sion.The results revealed that the as-prepared LSC exhibit an internal quantum efficiency(η_(int))of 42.39%and an optical efficiency(η_(opt))of 0.68%.These findings demonstrate the promising prospects of NFEF-CDs in the field of LSCs and provide a theoretical basis for their application in photovoltaic conversion. 展开更多
关键词 Carbon dots Narrow full width at half maximum Solid-state fluorescence Luminescence solar concentrators Photovoltaic conversion
原文传递
Economic analysis of solar energy development in North Africa 被引量:5
11
作者 Liang Zhao Wei Wang +2 位作者 Lingzhi Zhu Yang Liu Andreas Dubios 《Global Energy Interconnection》 2018年第1期53-62,共10页
The economic analysis of solar energy development is the basis of promoting the solar energy planning in north Africa and realizing the clean energy power transmission among continents. In this paper, the cost develop... The economic analysis of solar energy development is the basis of promoting the solar energy planning in north Africa and realizing the clean energy power transmission among continents. In this paper, the cost development trend of photovoltaic(PV) power and concentrating solar power(CSP) generation is analyzed, and the levelized cost of energy(LCOE) of solar power generation is forecasted. Then, taking the development of Tunisian solar energy as an example in the context of transcontinental transmission, PV power with energy storage and PV-CSP power generation are given as two kinds of development plan respectively. The installed capacity configurations of the two schemes are given with production simulation method, and comprehensive LCOE are calculated. The studies show that based on the LCOE forecast value, the LCOE of PV-CSP combined power generation will decrease when the annual utilization hours of transmission channel is increased. It can be chosen as one of important mode of the North Africa solar energy development. 展开更多
关键词 North Africa Photovoltaic power generation Concentrating solar power Energy storage Technical and economic
下载PDF
Application of Model Predictive Control Based on Kalman Filter in Solar Collector Field of Solar Thermal Power Generation 被引量:1
12
作者 Xiaojuan Lu Zeping Liang 《Energy Engineering》 EI 2021年第4期1171-1183,共13页
There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there a... There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there are a lot of random and uncontrollable,measurable and unmeasurable disturbances in solar collector field.This paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control(DMC)by linearizing and discretizing the dynamic model of the solar collector field.In addition,the purpose of controlling the stability of the outlet solar field salt temperature is achieved by adjusting the mass flow of molten salt.In order to further improve the ability of the system to suppress unmeasured disturbances,a steady-state Kalman filter is designed to estimate state variables,so that the system has better stability and robustness.The simulation verification results show that the DMC control system based on Kamlan filtering has better control effect than the traditional DMC control system.In the case of large fluctuations in solar radiation intensity and consideration of undetectable interference,the overshoot of the system is reduced by 4%and the rise time remains unchanged. 展开更多
关键词 Concentrating solar power generation temperature control predictive control dynamic matrix control Kamlan filter
下载PDF
Production of metallic nanopowders(Mg,Al)by solar carbothermal reduction of their oxides at low pressure
13
作者 J.Puig M.Balat-Pichelin 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第2期140-150,共11页
The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 an... The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 and 1700 K for a primary vacuum(1000 Pa),respectively,for Mg and Al.In the experimental section,concentrated solar energy was used for the process heating in order to favor energy savings.The products of the reaction between MgO or Al_(2)O_(3) and 2 varieties of carbon(graphite,carbon black)in flowing argon atmosphere at a total pressure of around 1000 to 1600 Pa were studied using X-ray diffraction,and microstructure observations revealed the formation of metallic nanopowders with some by-products.Metallic conversions close to 45 wt%and 52 wt%,respectively,for Mg and Al,were obtained.The low conversion yield of the carbothermal reduction of MgO can be attributed to a backward reaction reforming MgO powder and to a sintering process between oxide particles at high temperature.Aluminum production challenge is to avoid formation of undesired by-products:Al_(2)O,Al_(4)C_(3) and Al-oxycarbides.Advantages and weaknesses of the used process are described and some improvements are proposed to increase metallic yields. 展开更多
关键词 Carbothermal reduction THERMODYNAMICS Concentrated solar energy XRD Metallic nanopowders
下载PDF
High-temperature Thermal Properties and Wear Behavior of Basalt as Heat Storage Material for Concentrated Solar Power Plants
14
作者 廖峻 朱旭鹏 +3 位作者 LI Jianan XUE Shuwen ZOU Changwei 张军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期547-553,共7页
The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the fr... The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment. 展开更多
关键词 thermal energy storage concentrated solar power BASALT wear rate
下载PDF
Thermo-Economic Optimization of Solar Thermal Devices by Coherent Integration of Technologies
15
作者 Javier Cano Nogueras 《Energy and Power Engineering》 2020年第11期671-707,共37页
Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatur... Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatures from radiation beams (as the solar ones) with moderate intensities. Solar radiation cannot be used directly to feed thermodynamic cycles, and optical concentration must be applied to that goal. In general, reflection from mirrors is preferred to refraction by lenses in this case, because they have less optical aberrations. Concentration conveys very high temperatures in the receiver. However, the higher the temperature, the lower the efficiency of the solar thermal apparatus. Besides that, economy also suffers quite a lot when going to very high concentration factors, which is one of the main burdens in the development of Solar Thermal Energy. A new configuration of solar radiation concentrator is presented. It includes a salient innovation in the way the mirrors are given the right curvature by mechanical forces. Those mirrors are originally flat and do not need any special thermal treatment for this purpose. The whole device concept has been guided by the principle of thermoeconomic coherence, which requires similar efforts in all degrees of freedom that have strong influence in the performance and cost of the system. The paper shows the decision tree that has oriented the project, following the principle of equilibrium in efforts, which leads to a design window of moderate values in the main variables. The prototype of this new configuration has already been built, and the first stage of research is considered to be finished, because the prototype has shown excellent conditions to include selected (fitting) technologies at a very low cost. 展开更多
关键词 Thermal systems THERMOECONOMICS Optimization Concentrated solar Power Azimuth Rotatory solar concentrator New CSP Fresnel Concept PROTOTYPE
下载PDF
Enhanced efficiency in Concentrated Parabolic Solar Collector(CPSC) with a porous absorber tube filled with metal nanoparticle suspension
16
作者 Mohammad Hatami Jiafeng Geng Dengwei Jing 《Green Energy & Environment》 SCIE 2018年第2期129-137,共9页
In this study, effects of different nanoparticles and porosity of absorber tube on the performance of a Concentrating Parabolic Solar Collector(CPSC) were investigated. A section of porous-filled absorber tube was mod... In this study, effects of different nanoparticles and porosity of absorber tube on the performance of a Concentrating Parabolic Solar Collector(CPSC) were investigated. A section of porous-filled absorber tube was modeled as a semi-circular cavity under the solar radiation which is filled by nanofluids and the governing equations were solved by FlexPDE numerical software. The effect of four physical parameters, nanoparticles type, nanoparticles volume fraction(φ), Darcy number(Da) and Rayleigh number(Ra), on the Nusselt number(Nu) was discussed. It turns out that Cu nanoparticle is the most suitable one for such solar collectors, compared to the commonly used Fe_3O_4, Al_2O_3, TiO_2.With the increased addition of Cu nanoparticles all the parameters φ, Da and Ra shows a significant increase against the Nu, indicates the enhanced heat transfer in such cases. As a result, low concentration of Cu nanoparticle suspension combined with porous matrix was supposed to be beneficial for the performance enhancement of concentrating parabolic solar collector. 展开更多
关键词 Concentrating parabolic solar collector Porous absorber tube NANOFLUID Nusselt number Finite Element Method
下载PDF
A Four-Wing Compound Parabolic Concentrator(CPC)Design for Heating and Sanitization of Waste Products
17
作者 Ababu Teklemariam Tiruneh William N.Ndlela +2 位作者 Tendekayi Henry Gadaga Tesfamariam Debesay Jonna Heikkila 《Journal of Power and Energy Engineering》 2017年第3期18-35,共18页
Harnessing the freely available source of energy from the sun offers a number of additional benefits. Not least of these benefits is the fact that solar energy is an environmentally sustainable alternative. A four-win... Harnessing the freely available source of energy from the sun offers a number of additional benefits. Not least of these benefits is the fact that solar energy is an environmentally sustainable alternative. A four-wing compound parabolic concentrator (CPC) was designed as a modification of the regular non-imaging CPC concentrator that has a widespread use as solar collector. The design is intended to increase the angle of acceptance as well as concentration of energy from the sun. The conceptual design, mathematical formulation as well as construction and initial trial results have been presented in this paper. Pilot trials of the four-wing concentrator used for sanitizing both liquid and waste products produced satisfactory results. Improvements in terms of design as well as material used for construction and better preservation of heat can be considered further in the future research. 展开更多
关键词 solar concentrator Compound Parabolic concentrator Sanitization STERILIZATION CPC Non-Imaging concentrators Parabolic concentrators Waste Drying
下载PDF
Performance Improving of a Concentrating Photovoltaic System by Using a New Optical Adhesive
18
作者 Intissar Benrhouma Nabil Ben Hafsia +2 位作者 Bechir Chaouachi Marta Victoria Ignacio Anton 《Journal of Modern Physics》 2021年第12期1607-1617,共11页
The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to g... The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to guarantee a thickness that can provide a good silicone adherence to obtain long term stability and keeping a good solar transmittance performance, too. This new adhesive is made up of a mixture of silicone and transparent glass balls. The experimental part consists of the choice of the best size of glass balls with the suitable proportion of the glass balls weight in the mixture. For this purpose, ten samples were manufactured for every category of glass balls and weight ratio. Glass ball sizes between 100 and 1100 μm, and weight ratios between 1 and 10% were analyzed. For each category of glass balls, four proportions were mixed with the silicone. The thicknesses and transmittance of every sample were measured with appropriate instruments. The experimental results illustrate that the mixture containing balls with sizes inferior to 106 μm, is the best mixture which assures adhesive minimum thickness value necessary for an efficient mechanical bond and preserves also a good transmittance of solar irradiance. 展开更多
关键词 Secondary Optical Elements (SOE) Concentrating Photovoltaic solar Cell (CPV) New Adhesive Thickness TRANSMITTANCE
下载PDF
Numerical Study of New-Type Receiver with Axially-Hollow Spiral Deflector for Parabolic Trough Direct-Steam-Generation Loop of Concentrating Solar Power System 被引量:2
19
作者 SHI Yaolu SUN Jie WEI Jinjia 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期597-610,共14页
The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) te... The thermal stress-induced deformation issue of receiver is crucial to the performance and reliability of a parabolic-trough(PT) concentrating solar power(CSP) system with the promising direct steam generation(DSG) technology.The objective of the present study is to propose a new-type receiver with axially-hollow spiral deflector and optimize the geometric structure to solve the above issue.To this end,optical-flow-thermal multi-physics coupling models have been established for the preheating,boiling and superheating sections of a typical PT-DSG loop.The simulation results show that our proposed new-type receiver demonstrates outstanding comprehensive performance.It can minimize the circumferential temperature difference through the spiral deflector while lower the flow resistance cost through the axially hollow structure at the same time.As quantitatively evaluated by the temperature uniformity improvement(ε_(ΔT)) and the performance evaluation criteria(PEC),different designs are achieved based on different optimal schemes.When ε_(ΔT)is of primary importance,the optimal design with torsional ratio of 1 is achieved,with ε_(ΔT)=25.4%,25.7%,41.5% and PEC=0.486,0.878,0.596corresponding to preheating,boiling,superheating sections,respectively.When PEC is of primary importance,the optimal design with torsional ratio of 6-6.5 is achieved,with PEC=0.950,2.070,0.993 and ε_(ΔT)=18.2%,13.3 %,19.4% corresponding to preheating,boiling,superheating sections,respectively. 展开更多
关键词 concentrating solar power parabolic though collector direct steam generation performance evaluation criteria axially-hollow spiral deflector
原文传递
A switchable concentrating photovoltaic/concentrating solar power(CPV/CSP)hybrid system for flexible electricity/thermal generation
20
作者 PAN XinYu YUAN MengDi +1 位作者 JU Xing XU Chao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第8期2332-2345,共14页
Due to the intermittency and indeterminacy of solar irradiance,balancing energy supply and load demand remains a challenge.This paper proposed a switchable hybrid system that combines concentrating photovoltaic/concen... Due to the intermittency and indeterminacy of solar irradiance,balancing energy supply and load demand remains a challenge.This paper proposed a switchable hybrid system that combines concentrating photovoltaic/concentrating solar power(CPV/CSP)technology with thermal energy storage(TES)to achieve flexible electricity and thermal generation by adjusting the incident solar flux of photovoltaic(PV).The hybrid system can directly transfer surplus solar energy into high-quality heat for storage using a rotatable PV/heat receiver.The simulated results demonstrated that the hybrid system effectively improves power generation,optimally utilizes TES capacity,and reduces the levelized cost of electricity(LCOE).Over a selected seven-day period,the single-junction(1J)Ga As solar cells used in the hybrid system sustainably satisfied the load demand for more than five days without grid supplement,outperforming the CSP plant by an additional two days.The hybrid system utilizing the 1J Ga As with the base configuration of solar multiple(SM)of 1.26 and TES capacity of 5 h improved the annual power production and renewable penetration(RP)by 20.8%and 24.8%compared with the conventional CSP plant,respectively.The hybrid plant with monosilicon and a configuration of SM(1.8),PV ratio(1),and TES capacity(6 h)achieved an optimal LCOE of11.52$ct/k Wh and RP of 75.5%,which is 8.8%lower and 12.1%higher than the CSP plant,respectively. 展开更多
关键词 concentrated photovoltaic concentrated solar power hybrid system flexible electricity/thermal ratio techno-economic analysis
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部