Northwest China has abundant solar energy resources and a large demand for winter heating.Using solar energy for centralized heating is a clean and effective way to solve local heating problems.While present studies u...Northwest China has abundant solar energy resources and a large demand for winter heating.Using solar energy for centralized heating is a clean and effective way to solve local heating problems.While present studies usually decoupled solar heating stations and the heating network in the optimization design of centralized solar heating systems,this study developed a joint multi-objective optimization model for the equipment capacity and the diameters of the heating network pipes of a centralized solar district heating system,using minimum total life cycle cost and CO_(2)emission of the system as the optimization objectives.Three typical cities in northwest China with different solar resource conditions(Lhasa,Xining,and Xi'an)were selected as cases for analysis.According to the results,the solar heating system designed using the method proposed in this study presents lower economic cost and higher environmental protection in comparison to separately optimizing the design of the solar heating station and the heating network.Furthermore,the solar fraction of the optimal systems are 90%,70%,and 31%for Lhasa,Xining,and Xi'an,and the minimum water supply temperatures are 55℃,50℃,and 65℃for an optimal economy and 55℃,45℃,and 45℃for optimal environmental protection,respectively.It was also established that the solar collector price has a greater impact on the equipment capacity of the solar heating station than the gas boiler price.展开更多
For the efficient use of solar and fuels and to improve the supply-demand matching performance in combined heat and power(CHP)systems,this paper proposes a hybrid solar/methanol energy system integrating solar/exhaust...For the efficient use of solar and fuels and to improve the supply-demand matching performance in combined heat and power(CHP)systems,this paper proposes a hybrid solar/methanol energy system integrating solar/exhaust thermochemical and thermal energy storage.The proposed system includes parabolic trough solar collectors(PTSC),a thermochemical reactor,an internal combustion engine(ICE),and hybrid storage of thermal and chemical energy,which uses solar energy and methanol fuel as input and outputs power and heat.With methanol thermochemical decomposition reaction,mid-and-low temperature solar heat and exhaust heat are upgraded to chemical energy for efficient power generation.The thermal energy storage(TES)stores surplus thermal energy,acting as a backup source to produce heat without emitting CO_(2).Due to the energy storage,time-varying solar energy can be used steadily and efficiently;considerable supply-demand mismatches can be avoided,and the operational flexibility is improved.Under the design condition,the overall energy efficiency,exergy efficiency,and net solar-to-electric efficiency achieve 72.09%,37.65%,and 24.63%,respectively.The fuel saving rate(FSR)and the CO_(2) emission reduction(ER_(CO_(2)))achieve 32.97%and 25.33%,respectively.The research findings provide a promising approach for the efficient and flexible use of solar energy and fuels for combined heat and power.展开更多
In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ an...In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ and a futuristic 700℃,which substantially improves the efficiency of the molten salt containers through the use of a highly stable chloride salt called SS700(SaltStream 700).The theoretical analysis includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed theoretically using conductive heat transfer,however the area surrounding the soil surface around the bottom of the molten salt storage tank had convective heat transfer analysis included.The final designs presented in this paper seek to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃,which determines the thicknesses of the fiberglass and firebrick insulation.展开更多
In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700...In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The FEA(finite element analysis)includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed by finite element using conductive heat transfer,however the area surrounding the soil surface around the bottom of the MS storage tank had convective heat transfer analysis included.The finite elements analyses presented are to verify the final fiberglass and firebrick insulation designs,which seeks to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃.These results are also compared to previously calculated theoretical results.展开更多
INTRODUCTION Community Housing Partners(CHP)is a 501(c)(3)community development corporation that serves the needs of low-income and low-wealth individuals and families in the southeast.CHP’s mission is to create affo...INTRODUCTION Community Housing Partners(CHP)is a 501(c)(3)community development corporation that serves the needs of low-income and low-wealth individuals and families in the southeast.CHP’s mission is to create affordable,green,sustainable housing opportunities and services for the people and communities they serve.Since 1975,CHP has served over 206,000 people,including the elderly,women and children in transition,formerly homeless people,single female heads-of-household.展开更多
针对燃气轮机冷热电联产系统在"以热定电"运行方式下可能造成的电能过剩和部分负荷时效率不高等问题,该文提出一种太阳能与压缩空气耦合储能(solar andcompressed air energy storage,S-CAES)的燃气轮机冷热电联产系统。通过...针对燃气轮机冷热电联产系统在"以热定电"运行方式下可能造成的电能过剩和部分负荷时效率不高等问题,该文提出一种太阳能与压缩空气耦合储能(solar andcompressed air energy storage,S-CAES)的燃气轮机冷热电联产系统。通过燃气轮机冷热电联产系统典型变工况模型和储能系统的Aspen Plus分析模型,获得S-CAES燃气轮机冷热电联产系统的变工况特性;讨论了各子系统的变工况特性和耦合系统在不同储能率下的运行性能,比较了储能系统释气流量调节与空气透平入口温度调节两种调节方式对系统性能的影响。将S-CAES燃气轮机冷热电联产系统用于华南地区某宾馆建筑进行案例分析,结果表明:与无储能燃气轮机冷热电联产系统相比,在夏季、过渡季、冬季典型日,该系统每天分别节约能量16.57、15.94、11.87GJ;平均能量利用率分别提高5.68%、7.88%和4.69%。展开更多
基金This research was supported by the National Natural Science Foundation of China(52008328)National Key Research and Development Project(2018YFD1100202)+1 种基金the Science and Technology Department of Shaanxi Province(2020SF-393,2018ZDCXL-SF-03-04)the State Key Laboratory of Green Building in Western China(LSZZ202009).
文摘Northwest China has abundant solar energy resources and a large demand for winter heating.Using solar energy for centralized heating is a clean and effective way to solve local heating problems.While present studies usually decoupled solar heating stations and the heating network in the optimization design of centralized solar heating systems,this study developed a joint multi-objective optimization model for the equipment capacity and the diameters of the heating network pipes of a centralized solar district heating system,using minimum total life cycle cost and CO_(2)emission of the system as the optimization objectives.Three typical cities in northwest China with different solar resource conditions(Lhasa,Xining,and Xi'an)were selected as cases for analysis.According to the results,the solar heating system designed using the method proposed in this study presents lower economic cost and higher environmental protection in comparison to separately optimizing the design of the solar heating station and the heating network.Furthermore,the solar fraction of the optimal systems are 90%,70%,and 31%for Lhasa,Xining,and Xi'an,and the minimum water supply temperatures are 55℃,50℃,and 65℃for an optimal economy and 55℃,45℃,and 45℃for optimal environmental protection,respectively.It was also established that the solar collector price has a greater impact on the equipment capacity of the solar heating station than the gas boiler price.
基金financially supported by the Distinguish Young Scholars of the National Natural Science Foundation of China(No.52225601)the National Natural Science Foundation of China(Grant No.52006214)。
文摘For the efficient use of solar and fuels and to improve the supply-demand matching performance in combined heat and power(CHP)systems,this paper proposes a hybrid solar/methanol energy system integrating solar/exhaust thermochemical and thermal energy storage.The proposed system includes parabolic trough solar collectors(PTSC),a thermochemical reactor,an internal combustion engine(ICE),and hybrid storage of thermal and chemical energy,which uses solar energy and methanol fuel as input and outputs power and heat.With methanol thermochemical decomposition reaction,mid-and-low temperature solar heat and exhaust heat are upgraded to chemical energy for efficient power generation.The thermal energy storage(TES)stores surplus thermal energy,acting as a backup source to produce heat without emitting CO_(2).Due to the energy storage,time-varying solar energy can be used steadily and efficiently;considerable supply-demand mismatches can be avoided,and the operational flexibility is improved.Under the design condition,the overall energy efficiency,exergy efficiency,and net solar-to-electric efficiency achieve 72.09%,37.65%,and 24.63%,respectively.The fuel saving rate(FSR)and the CO_(2) emission reduction(ER_(CO_(2)))achieve 32.97%and 25.33%,respectively.The research findings provide a promising approach for the efficient and flexible use of solar energy and fuels for combined heat and power.
文摘In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ and a futuristic 700℃,which substantially improves the efficiency of the molten salt containers through the use of a highly stable chloride salt called SS700(SaltStream 700).The theoretical analysis includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed theoretically using conductive heat transfer,however the area surrounding the soil surface around the bottom of the molten salt storage tank had convective heat transfer analysis included.The final designs presented in this paper seek to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃,which determines the thicknesses of the fiberglass and firebrick insulation.
文摘In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The FEA(finite element analysis)includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed by finite element using conductive heat transfer,however the area surrounding the soil surface around the bottom of the MS storage tank had convective heat transfer analysis included.The finite elements analyses presented are to verify the final fiberglass and firebrick insulation designs,which seeks to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃.These results are also compared to previously calculated theoretical results.
文摘INTRODUCTION Community Housing Partners(CHP)is a 501(c)(3)community development corporation that serves the needs of low-income and low-wealth individuals and families in the southeast.CHP’s mission is to create affordable,green,sustainable housing opportunities and services for the people and communities they serve.Since 1975,CHP has served over 206,000 people,including the elderly,women and children in transition,formerly homeless people,single female heads-of-household.
文摘针对燃气轮机冷热电联产系统在"以热定电"运行方式下可能造成的电能过剩和部分负荷时效率不高等问题,该文提出一种太阳能与压缩空气耦合储能(solar andcompressed air energy storage,S-CAES)的燃气轮机冷热电联产系统。通过燃气轮机冷热电联产系统典型变工况模型和储能系统的Aspen Plus分析模型,获得S-CAES燃气轮机冷热电联产系统的变工况特性;讨论了各子系统的变工况特性和耦合系统在不同储能率下的运行性能,比较了储能系统释气流量调节与空气透平入口温度调节两种调节方式对系统性能的影响。将S-CAES燃气轮机冷热电联产系统用于华南地区某宾馆建筑进行案例分析,结果表明:与无储能燃气轮机冷热电联产系统相比,在夏季、过渡季、冬季典型日,该系统每天分别节约能量16.57、15.94、11.87GJ;平均能量利用率分别提高5.68%、7.88%和4.69%。