At present,industrial development is heavily dependent on traditional fossil energy,which has had an increasingly serious impact on the environment.Clean and renewable energy has received extensive attention and its p...At present,industrial development is heavily dependent on traditional fossil energy,which has had an increasingly serious impact on the environment.Clean and renewable energy has received extensive attention and its proportion in daily life has gradually increased.As a clean and renewable energy source that is not affected by changes in weather and seasons,geothermal energy has developed rapidly in recent years and has received increasing attention.According to reports,the total installed capacity of geothermal power generation in the world in 2020 was 15950 MW-an increase of~27%over 2015.At the end of 2019,the total installed capacity for global geothermal direct use was 107727 MW-an increase of 52.0%compared with 2015;the total annual energy use was 1020887 TJ(283580 GWh)-an increase of 72.3%over 2015.Through the investigation of geothermal power generation technology in recent years,the characteristics and shortcomings of various power generation methods are analysed.At the same time,this review analyzes the characteristics of geothermal energy and other renewable-energy(solar energy,water energy)coupling power generation,and analyzes the principles and characteristics of geothermal energy and various new-energy coupling power generation methods.Through investigation and analysis,this review provides a complete understanding of various geothermal power generation technologies and provides insights into the future development direction.展开更多
This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem...This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy.Based on the life cycle method,the configuration optimization under eight operation strategies is studied with the economy,energy,and environment indicators.The eight operation strategies include FEL,FEL-EC,FEL-TES,FEL-TES&EC,FTL,FTL-EC,FTL-TES,and FTL-TES&EC.The feasibility of each strategy is verified by taking a residential building cluster as an example.The indicators under the optimal configuration of each strategy are compared with that of the separate production(SP)system.The results showed that the PTST-CCHP system improves the environment and energy performance by changing the ratio of thermal energy and electric energy.The environment and energy indicators of FEL-TES&EC are superior to those of FTL-TES&EC in summer,and the results are just the opposite in winter.The initial annual investment of the PTST-CCHP system is higher than that of the SP system,but its economic performance is better than that of the SP system with the increase of life-cycle.展开更多
This paper researches the performance of a novel supercritical carbon dioxide(S-CO_2) Brayton cycle and organic Rankine cycle(ORC) combined system with a theoretical solar radiation diurnal distribution. The new syste...This paper researches the performance of a novel supercritical carbon dioxide(S-CO_2) Brayton cycle and organic Rankine cycle(ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO_2 Brayton cycle heater, where heat releasing from the S-CO_2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids.展开更多
基金support of the Science and Technology Support Program of Sichuan Province(2022JDRC0025)the National Natural Science Foundation of China(NFSC,Grant No.52007025).
文摘At present,industrial development is heavily dependent on traditional fossil energy,which has had an increasingly serious impact on the environment.Clean and renewable energy has received extensive attention and its proportion in daily life has gradually increased.As a clean and renewable energy source that is not affected by changes in weather and seasons,geothermal energy has developed rapidly in recent years and has received increasing attention.According to reports,the total installed capacity of geothermal power generation in the world in 2020 was 15950 MW-an increase of~27%over 2015.At the end of 2019,the total installed capacity for global geothermal direct use was 107727 MW-an increase of 52.0%compared with 2015;the total annual energy use was 1020887 TJ(283580 GWh)-an increase of 72.3%over 2015.Through the investigation of geothermal power generation technology in recent years,the characteristics and shortcomings of various power generation methods are analysed.At the same time,this review analyzes the characteristics of geothermal energy and other renewable-energy(solar energy,water energy)coupling power generation,and analyzes the principles and characteristics of geothermal energy and various new-energy coupling power generation methods.Through investigation and analysis,this review provides a complete understanding of various geothermal power generation technologies and provides insights into the future development direction.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Research on Scheduling Control Technology of Photothermal Power Generation of The Power System with High Proportion New Energy on The Supply End(Grant No.SGGSKY00FJJS1900273).
文摘This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy.Based on the life cycle method,the configuration optimization under eight operation strategies is studied with the economy,energy,and environment indicators.The eight operation strategies include FEL,FEL-EC,FEL-TES,FEL-TES&EC,FTL,FTL-EC,FTL-TES,and FTL-TES&EC.The feasibility of each strategy is verified by taking a residential building cluster as an example.The indicators under the optimal configuration of each strategy are compared with that of the separate production(SP)system.The results showed that the PTST-CCHP system improves the environment and energy performance by changing the ratio of thermal energy and electric energy.The environment and energy indicators of FEL-TES&EC are superior to those of FTL-TES&EC in summer,and the results are just the opposite in winter.The initial annual investment of the PTST-CCHP system is higher than that of the SP system,but its economic performance is better than that of the SP system with the increase of life-cycle.
基金financial support provided by the National Natural Science Foundation of China (Grant No. 51706181, 51806172)the Postdoctoral Science Foundation of China (Grant No. 2017M613294XB)+1 种基金Key Programs of China Huaneng Group (Grant No. HNKJ15-H07)Young Talent Programs of Shaanxi Province of China(Grant No. ZD-18-SST04)
文摘This paper researches the performance of a novel supercritical carbon dioxide(S-CO_2) Brayton cycle and organic Rankine cycle(ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO_2 Brayton cycle heater, where heat releasing from the S-CO_2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids.