New observational data related to the X1.1/2N solar flare of 17 July 2004 were investigated and compared with some old data for other powerful flares and non-flare regions. Observations were carried out with the Echel...New observational data related to the X1.1/2N solar flare of 17 July 2004 were investigated and compared with some old data for other powerful flares and non-flare regions. Observations were carried out with the Echelle spectrograph of the Kyiv University Astronomical Observatory. The Stokes I ± V profiles of several metallic lines with different effective Lande factors geff have been analyzed including the FeI 5434.5 line with very low magnetic sensitivity (geff = –0.014). The obvious evidences of the emissive Zeeman effect were found as in lines with great and middle Lande factors as in FeI 5434.5 line. On the basis of all analyzed data one can conclude that upper magnetic field limit in flares can reach 70 - 90 kG, i.e. about more order higher than the well-known magnetic fields in great sunspots. The possible physical nature of such superstrong fields is discussed.展开更多
I. OBSERVATIONAL DATA In 0050—0100 UT on Oct. 7, 1987, a small solar flare, with its maximum at 0055 UTand an apparent area of 27×10<sup>-6</sup> solar disk, occurred in the active region NOAA/USAF 4...I. OBSERVATIONAL DATA In 0050—0100 UT on Oct. 7, 1987, a small solar flare, with its maximum at 0055 UTand an apparent area of 27×10<sup>-6</sup> solar disk, occurred in the active region NOAA/USAF 4862 (N33, E16). Around this period the high-quality chromospheric filtergrams展开更多
It is well known that magnetic energy serves as a main source for solar flares, but no unanimous conclusion has been drawn on the energy release mechanism. Previous solar flare models invoked either magnetic reconnect...It is well known that magnetic energy serves as a main source for solar flares, but no unanimous conclusion has been drawn on the energy release mechanism. Previous solar flare models invoked either magnetic reconnection across electric current sheets or instabilities of force-free fields, and met with difficulties in magnetic energy storage and release respectively. Recently, Hu presented a family of solutions for local展开更多
In the first part of this paper, we propose that the term’ solar spectrum’should be generalized to Stokes (unpolarized and polarized) spectrum rather than the ordinary (unpolarized) one which is included in the form...In the first part of this paper, we propose that the term’ solar spectrum’should be generalized to Stokes (unpolarized and polarized) spectrum rather than the ordinary (unpolarized) one which is included in the former as the first component. The significance of Stokes (polarized) spectrum observation is emphasized. In the second part, a sample of recent Stokes spectrum observation carried out at Yunnann Observatory is shown and it signifies the beginning of such observation in China.展开更多
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We h...The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields.Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity,magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.展开更多
In this paper, we study the correlation between the expansion speed of two-ribbon flares and the magnetic field measured in the ribbon location, and compare such correlation for two events with different magnetic conf...In this paper, we study the correlation between the expansion speed of two-ribbon flares and the magnetic field measured in the ribbon location, and compare such correlation for two events with different magnetic configurations. These two events are: an M1.0 flare in the quiet sun on September 12, 2000 and an X2.3 flare in Active Region NOAA 9415 on April 10, 2001. The magnetic configuration of the M1.0 flare is simple, while that of X2.3 event is complex. We have derived a power-law correlation between the ribbon expansion speed (V r) and the longitudinal magnetic field (Bz) with an empirical relationship V r = A×Bz-δ, where A is a constant and δ is the index of the power-law correlation. We have found that δ for the M1.0 flare in the simple magnetic configuration is larger than that for the X2.3 flare in the complex magnetic configuration.展开更多
We have performed microwave diagnostics of the magnetic field strengths in solar flaring loops based on the theory of gyrosynchrotron emission.From Nobeyama Radioheliograph observations of three flare events at 17 and...We have performed microwave diagnostics of the magnetic field strengths in solar flaring loops based on the theory of gyrosynchrotron emission.From Nobeyama Radioheliograph observations of three flare events at 17 and 34 GHz,we obtained the degree of circular polarization and the spectral index of microwave flux density,which were then used to map the magnetic field strengths in post-flare loops.Our results show that the magnetic field strength typically decreases from ~800 G near the loop footpoints to~100 G at a height of 10-25 Mm.Comparison of our results with magnetic field modeling using a flux rope insertion method is also discussed.Our study demonstrates the potential of microwave imaging observations,even at only two frequencies,in diagnosing the coronal magnetic field of flaring regions.展开更多
磁场是太阳物理的第1观测量,当前太阳磁场观测研究正迈向大视场、高时空分辨率、高偏振测量精度以及空间观测的时代.中国首颗太阳观测卫星-先进天基太阳天文台(ASO-S)也配置了具有高时空分辨率、高磁场灵敏度的全日面矢量磁像仪(FMG)载...磁场是太阳物理的第1观测量,当前太阳磁场观测研究正迈向大视场、高时空分辨率、高偏振测量精度以及空间观测的时代.中国首颗太阳观测卫星-先进天基太阳天文台(ASO-S)也配置了具有高时空分辨率、高磁场灵敏度的全日面矢量磁像仪(FMG)载荷,针对FMG载荷的需求,讨论了大面阵、高帧频互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像传感器应用于太阳磁场观测的可行性.首先,基于滤光器型太阳磁像仪观测的原理,比较分析了目前CMOS图像传感器(可用的或是可选的两种快门模式)的特点,指出全局快门类型更适合FMG;其次搭建了CMOS传感器实验室测试系统,测量了CMOS图像传感器的像素增益及其分布规律;最后在怀柔太阳观测基地的全日面太阳望远镜上开展了实测验证,获得预期成果.在这些研究基础上,形成了FMG载荷探测器选型方向.展开更多
文摘New observational data related to the X1.1/2N solar flare of 17 July 2004 were investigated and compared with some old data for other powerful flares and non-flare regions. Observations were carried out with the Echelle spectrograph of the Kyiv University Astronomical Observatory. The Stokes I ± V profiles of several metallic lines with different effective Lande factors geff have been analyzed including the FeI 5434.5 line with very low magnetic sensitivity (geff = –0.014). The obvious evidences of the emissive Zeeman effect were found as in lines with great and middle Lande factors as in FeI 5434.5 line. On the basis of all analyzed data one can conclude that upper magnetic field limit in flares can reach 70 - 90 kG, i.e. about more order higher than the well-known magnetic fields in great sunspots. The possible physical nature of such superstrong fields is discussed.
文摘I. OBSERVATIONAL DATA In 0050—0100 UT on Oct. 7, 1987, a small solar flare, with its maximum at 0055 UTand an apparent area of 27×10<sup>-6</sup> solar disk, occurred in the active region NOAA/USAF 4862 (N33, E16). Around this period the high-quality chromospheric filtergrams
基金the Chinese Astronomical Committee, Chinese Academy of Sciences.
文摘It is well known that magnetic energy serves as a main source for solar flares, but no unanimous conclusion has been drawn on the energy release mechanism. Previous solar flare models invoked either magnetic reconnection across electric current sheets or instabilities of force-free fields, and met with difficulties in magnetic energy storage and release respectively. Recently, Hu presented a family of solutions for local
文摘In the first part of this paper, we propose that the term’ solar spectrum’should be generalized to Stokes (unpolarized and polarized) spectrum rather than the ordinary (unpolarized) one which is included in the former as the first component. The significance of Stokes (polarized) spectrum observation is emphasized. In the second part, a sample of recent Stokes spectrum observation carried out at Yunnann Observatory is shown and it signifies the beginning of such observation in China.
基金supported by National Natural Science Foundation of China (Grant Nos. 11533005, 11203014, 11373023, and 11303016)National Key Basic Research Special Foundation (Grant No. 2014CB744203)
文摘The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields.Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity,magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10611120338, 10473016, 10673016, and 60673158)the National Basic Research Program of China (Grant No. 2006CB806301)+1 种基金the Chinese Academy of Sciences (Grant No. KLCX2-YW-T04)the National Aeronautics and Space Administration of USA (Grant Nos. NNX0-7AH78G and NNX0-8AQ90G)
文摘In this paper, we study the correlation between the expansion speed of two-ribbon flares and the magnetic field measured in the ribbon location, and compare such correlation for two events with different magnetic configurations. These two events are: an M1.0 flare in the quiet sun on September 12, 2000 and an X2.3 flare in Active Region NOAA 9415 on April 10, 2001. The magnetic configuration of the M1.0 flare is simple, while that of X2.3 event is complex. We have derived a power-law correlation between the ribbon expansion speed (V r) and the longitudinal magnetic field (Bz) with an empirical relationship V r = A×Bz-δ, where A is a constant and δ is the index of the power-law correlation. We have found that δ for the M1.0 flare in the simple magnetic configuration is larger than that for the X2.3 flare in the complex magnetic configuration.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17040507)the National Natural Science Foundation of China (Grant Nos. 11790300, 11790301, 11790302, 11790304, 11825301, 11973057, 11803002 and 11473071)。
文摘We have performed microwave diagnostics of the magnetic field strengths in solar flaring loops based on the theory of gyrosynchrotron emission.From Nobeyama Radioheliograph observations of three flare events at 17 and 34 GHz,we obtained the degree of circular polarization and the spectral index of microwave flux density,which were then used to map the magnetic field strengths in post-flare loops.Our results show that the magnetic field strength typically decreases from ~800 G near the loop footpoints to~100 G at a height of 10-25 Mm.Comparison of our results with magnetic field modeling using a flux rope insertion method is also discussed.Our study demonstrates the potential of microwave imaging observations,even at only two frequencies,in diagnosing the coronal magnetic field of flaring regions.
文摘磁场是太阳物理的第1观测量,当前太阳磁场观测研究正迈向大视场、高时空分辨率、高偏振测量精度以及空间观测的时代.中国首颗太阳观测卫星-先进天基太阳天文台(ASO-S)也配置了具有高时空分辨率、高磁场灵敏度的全日面矢量磁像仪(FMG)载荷,针对FMG载荷的需求,讨论了大面阵、高帧频互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像传感器应用于太阳磁场观测的可行性.首先,基于滤光器型太阳磁像仪观测的原理,比较分析了目前CMOS图像传感器(可用的或是可选的两种快门模式)的特点,指出全局快门类型更适合FMG;其次搭建了CMOS传感器实验室测试系统,测量了CMOS图像传感器的像素增益及其分布规律;最后在怀柔太阳观测基地的全日面太阳望远镜上开展了实测验证,获得预期成果.在这些研究基础上,形成了FMG载荷探测器选型方向.