期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
1
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 Inverted perovskite solar cells Perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Recent progress of inverted organic-inorganic halide perovskite solar cells
2
作者 Dongyang Li Yulan Huang +4 位作者 Zhiwei Ren Abbas Amini Aleksandra B.Djurišic Chun Cheng Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期168-191,共24页
In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide ... In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide application.The efficiency gap between IPSCs and regular structures has shrunk to less than 1%.Over the past few years,IPSC research has mainly focused on optimizing power conversion efficiency to accelerate the development of IPSCs.This review provides an overview of recent improvements in the efficiency of IPSCs,including interface engineering and novel film production techniques to overcome critical obstacles.Tandem and integrated applications of IPSCs are also summarized.Furthermore,prospects for further development of IPSCs are discussed,including the development of new materials,methods,and device structures for novel IPSCs to meet the requirements of commercialization. 展开更多
关键词 Inverted perovskite solar cells Interface engineering Additive engineering Tandem solar cells Integrated solar cells
下载PDF
Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI_(3)-Based Inverted Perovskite Solar Cells
3
作者 Xuefeng Zhu Rui Lin +5 位作者 Hao Gu Huichao Hu Zheng Liu Guichuan Xing Yibing Wu Xinhua Ouyang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期251-259,共9页
Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficienc... Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficiency and the stability of the PSCs.The additive engineering is one of the most effective approaches to overcome this problem.Most of the successful additives are extracted from the petroleum-based materials,while the research on the biomass-based additives is still lagging behind.In this paper,two ecofriendly hydroxyalkyl cellulose additives,i.e.,hydroxyethyl cellulose(HEC)and hydroxylpropyl cellulose(HPC),are investigated on the performance of the MAPbl_(3)-based inverted PSCs.Due to the strong interaction between the hydroxyl groups of the cellulose and the divalent cations of the perovskite,these additives enhance the crystal grain orientation and significantly repair the defects of the perovskite films.Working as the additives,these two cellulose derivatives show a strong passivation ability,which significantly reduces the trap density and improves the optoelectronic feature of the PSCs.Compared with the average power conversion efficiency(PCE)of the control device(19.19%),an enhancement of~10%is achieved after the addition of HEC.The optimized device(PCE=21.25%)with a long-term stability(10:80 h,PCE=20.93%)is achieved by the incorporation of the HEC additives into the precursor solution.It is the best performance among the PSCs with the cellulose additives up to now.This research provides a novel choice to develop a cost-effective and renewable additive for the PSCs with high efficiency and excellent long-term stability. 展开更多
关键词 ADDITIVES hydroxyalkyl cellulose inverted perovskite solar cells MAPbl_(3)
下载PDF
Thermally Evaporated ZnSe for Efficient and Stable Regular/Inverted Perovskite Solar Cells by Enhanced Electron Extraction
4
作者 Xin Li Guibin Shen +6 位作者 Xin Ren Ng Zhiyong Liu Yun Meng Yongwei Zhang Cheng Mu Zhi Gen Yu Fen Lin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期440-448,共9页
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l... Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics. 展开更多
关键词 high efficiency long-term stability planar regular/inverted perovskite solar cells thermal evaporation ZnSe electron transport layer
下载PDF
Hole‑Transport Management Enables 23%‑Efficient and Stable Inverted Perovskite Solar Cells with 84%Fill Factor
5
作者 Liming Liu Yajie Ma +7 位作者 Yousheng Wang Qiaoyan Ma Zixuan Wang Zigan Yang Meixiu Wan Tahmineh Mahmoudi Yoon‑Bong Hahn Yaohua Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期154-166,共13页
NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interf... NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interface defects between hole-selective contacts(HSCs)and perovskite-active layer(PAL)still limits device efficiencyimprovement.Here,we report a graded configuration based on bothinterface-cascaded structures and p-type molecule-doped compositeswith two-/three-dimensional formamidinium-based triple-halideperovskites.We find that the interface defects-induced non-radiativerecombination presented at HSCs/PAL interfaces is remarkably suppressedbecause of efficient hole extraction and transport.Moreover,astrong chemical interaction,halogen bonding and coordination bondingare found in the molecule-doped perovskite composites,whichsignificantly suppress the formation of halide vacancy and parasitic metallic lead.As a result,NiO_(x)-based inverted PSCs present a power-conversion-efficiency over 23%with a high fill factor of 0.84 and open-circuit voltage of 1.162 V,which are comparable to the best reported around 1.56-electron volt bandgap perovskites.Furthermore,devices with encapsulation present high operational stability over 1,200 h during T_(90) lifetime measurement(the time as a function of PCE decreases to 90%of its initial value)under 1-sun illumination in ambient-air conditions. 展开更多
关键词 Inverted NiO_(x)-based perovskite solar cells Hole-transport management Interface-induced defect passivation High performance and stability
下载PDF
Effective Surface Treatment for High‑Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92% 被引量:2
6
作者 Sheng Fu Xiaodong Li +3 位作者 Li Wan Wenxiao Zhang Weijie Song Junfeng Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期133-145,共13页
Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the ... Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the regular.However,relatively low opening circuit voltage(Voc)and limited moisture stability have lagged their progress far from the regular.Here,we propose an effective surface treatment strategy with high-temperature FABr treatment to address these issues.The induced ions exchange can not only adjust energy level,but also gift effective passivation.Meanwhile,the gradient distribution of FA+can accelerate the carriers transport to further suppress bulk recombination.Besides,the Br-rich surface and FA+substitution can isolate moisture erosions.As a result,the optimized devices show champion efficiency of 15.92%with Voc of 1.223 V.In addition,the tolerance of humidity and operation get significant promotion:maintaining 91.7%efficiency after aged at RH 20%ambient condition for 1300 h and 81.8%via maximum power point tracking at 45°C for 500 h in N2.Furthermore,the unpackaged devices realize the rare reported air operational stability and,respectively,remain almost efficiency(98.9%)after operated under RH 35%for 600 min and 91.2%under RH 50%for 300 min. 展开更多
关键词 CsPbI2Br Inverted perovskite solar cells Effective passivation Voc loss Stability
下载PDF
Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO_2 nanotubes 被引量:1
7
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh Hamed Fatehy 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期320-324,共5页
An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient c... An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls. 展开更多
关键词 inverted polymer solar cells TiO2 nanotubes electrochemical-anodizing doctor blading
下载PDF
Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells 被引量:1
8
作者 Bingbing Chen Pengyang Wang +3 位作者 Ningyu Ren Renjie Li Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期89-103,共15页
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long... Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future. 展开更多
关键词 atomic layer deposition tin dioxide additional buffer layer efficiency and stability inverted perovskite solar cells
下载PDF
Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer 被引量:1
9
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh +1 位作者 Samaneh Ghazanfarpour Mohammad Khanzadeh 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期406-410,共5页
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex... We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths. 展开更多
关键词 inverted polymer solar cells electron transport layer vanadium-doped TiO2 thin films solvothermal
下载PDF
Multiple methoxy-substituted hole transporter for inverted perovskite solar cells
10
作者 Wei Yu Sajjad Ahmad +5 位作者 Hengkai Zhang Zhiliang Chen Qing Yang Xin Guo Can Li Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期127-131,共5页
Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lo... Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lower power conversion efficiency(PCE)and inferior reproducibility than conventional PSCs limit further developments.These problems are largely determined by the hole transporting layer(HTL)and the quality of the upper perovskite film[6-8];in particular,the latter is considerably influenced by the surface property of the underlying HTL. 展开更多
关键词 Multiple methoxy-substituted Wettability Small molecule Hole transporting layer Inverted perovskite solar cells
下载PDF
Recent advances of interface engineering in inverted perovskite solar cells
11
作者 余诗琪 熊壮 +6 位作者 王振涵 周海涛 马飞 瞿子涵 赵洋 楚新波 游经碧 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期53-65,共13页
Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unst... Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unstable charge transport layers,such as the hygroscopic doped spiro-OMe TAD,which affect the long-term stability.The inverted device with the p-i-n structure owns better stability when using stable undoped organic molecular or metal oxide materials.There are significant progresses in inverted PSCs,most of them related to charge transport or interface engineering.In this review,we will mainly summarize the inverted PSCs progresses related to the interface engineering.After that,we prospect the future direction on inverted PSCs. 展开更多
关键词 inverted perovskite solar cells charge transport layer interface modification defect passivation
下载PDF
Photoactive area modification in bulk heterojunction organic solar cells using optimization of electrochemically synthesized ZnO nanorods
12
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期422-427,共6页
In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and na... In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV-visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6- 6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved. 展开更多
关键词 electrochemical deposition density-controlled ZnO nanorods inverted polymer solar cells active area modification
下载PDF
Improved interfacial property by small molecule ethanediamine for high performance inverted planar perovskite solar cells
13
作者 Guodong Zhang Yunxin Zhang +9 位作者 Siqi Chen Hao Chen Le Liu Wenming Ding Jinhui Wang Anyu Zhang Shuping Pang Xin Guo Lianqing Yu Tonggang Jiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期467-474,共8页
We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte h... We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte hole transport material(P3CT-ED HTM).It is found that P3CT-ED can not only improve the hole transport property of P3CT-K but also improve the crystallinity of adjacent perovskite film.In addition,the introduction of ethanediamine into P3CT realigns the conduction and valence bands upwards,passivates surface defects and reduces nonradiative recombination.As a consequence,compared to P3CT-K hole transport layer(HTL)based devices,the average power conversion efficiency(PCE)is boosted from17.2% to 19.6% for the counterparts with P3CT-ED,with simultaneous enhancement in open circuit voltage and fill factor.The resultant device displays a champion PCE of 20.5% with negligible hysteresis. 展开更多
关键词 Improved interfacial property Inverted planar perovskite solar cells Passivated trap states Crystallinity Ethanediamine
下载PDF
Comparison of conventional and inverted structures in fullerene-free organic solar cells
14
作者 Yifan Wang Huitao Bai Xiaowei Zhan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期744-749,共6页
A n-type small molecule DC-IDT2E with 4,4,9,9-tetrakis(4-hexylphenyl)-indaceno[1,2-b:5,6-bt]dithiophene as a central building block, furan as rr-bridges, and 1,1 -dicyanomethylene-3-indanone as end acceptor groups,... A n-type small molecule DC-IDT2E with 4,4,9,9-tetrakis(4-hexylphenyl)-indaceno[1,2-b:5,6-bt]dithiophene as a central building block, furan as rr-bridges, and 1,1 -dicyanomethylene-3-indanone as end acceptor groups, was synthesized and used as an electron acceptor in solution-processed organic solar cells (OSCs). DC-IDT2F exhibited good thermal stability, broad and strong absorption in 500-850 rim, a narrow bandgap of 1.54 eV, LUMO of-3.88 eV, HOMO of-5.44 eV and an electron mobility of 6.5 × 10-4 cm2/(V.s). DC-IDT2F-based OSCs with conventional and inverted structures exhibited power conversion efficiencies of 2.26 and 3.08% respec- tively. The effect of vertical phase separation and morphology of the active layer on the device performance in the two structures was studied. 展开更多
关键词 Organic solar cells Non-fullerene acceptors Fullerene free Vertical phase separation Inverted structure
下载PDF
An Approach to Equivalent Circuit Modelling of Inverted Organic Solar Cells
15
作者 Nazmul Hossain Sayantan Das Terry L. Alford 《Circuits and Systems》 2016年第8期1297-1306,共10页
A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub&... A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub>3</sub>HT and PC<sub>16</sub>BM type solar cells. It was demonstrated that annealing and doping of electron transport layer influenced the overall organic solar cells performance. Anneals of ~ 150?C provided the highest device performance. Compared to the undoped zinc oxide, the device with yttrium doped zinc oxide layers showed improved efficiency by about 30%. Furthermore an equivalent circuit was proposed to understand the connection between the electrical and optical characteristics of the device. Comparisons between the simulated and experimental current-voltage(I-V) curves displayed only a 1.2% variation between the curves. Clearly, our experimental and simulated studies provide new insight on the equivalent circuit models for inverted organic solar cells and further improvement on photovoltaic efficiency. 展开更多
关键词 Inverted Organic solar Cell Equivalent Circuit Fill-Factor P3HT/PCBM ETL Yttrium-Doped ZnO
下载PDF
Multifunctional anchoring of O-ligands for high-performance and stable inverted perovskite solar cells
16
作者 Lisha Xie Xuhong Zhao +8 位作者 Jianwei Wang Jun Li Chang Liu Shurong Wang Qinye Bao Mengjin Yang Xiaobin Niu Feng Hao Ziyi Ge 《InfoMat》 SCIE CSCD 2023年第2期34-44,共11页
Functional additives have recently been regarded as emerging candidates to improve the performance and stability of perovskite solar cells(PSCs).Herein,nicotinamide(N),2-chloronicotinamide(2Cl),and 6-chloronicotinamid... Functional additives have recently been regarded as emerging candidates to improve the performance and stability of perovskite solar cells(PSCs).Herein,nicotinamide(N),2-chloronicotinamide(2Cl),and 6-chloronicotinamide(6Cl)were employed as O-ligands to facilitate the deposition of MAPbI_(3)(MA=methylammonium)and MA-free FA_(0.88)Cs_(0.12)PbI_(2.64)Br_(0.36)(FA=formamidinium)perovskite films by multifunctional anchoring.By density functional theory(DFT)calculations and ultraviolet photoelectron spectroscopy(UPS)measurements,it is identified that the highest occupied molecular orbital(HOMO)level for additive modified MAPbI_(3)perovskite could reduce the voltage deficit for hole extraction.Moreover,due to the most favorable charge distribution and significant improvements in charge mobility and defect passivation,the power conversion efficiency(PCE)of 2Cl-MAPbI_(3)PSCs was significantly improved from 19.32%to 21.12%.More importantly,the two-dimensional grazing-incidence wide-angle X-ray scattering(GIWAXS)analysis showed that PbI_(2) defects were effectively suppressed and femtosecond transient absorption(TA)spectroscopy demonstrated that the trap-assisted recombination at grain boundaries was effectively inhibited in the 2Cl-MA-free film.As a result,the thermally stable 2Cl-MA-free PSCs achieved a remarkable PCE of 23.13%with an open-circuit voltage(V_(oc))of 1.164 V and an ultrahigh fill factor(FF)of 85.7%.Our work offers a practical strategy for further commercializing stable and efficient PSCs. 展开更多
关键词 additive engineering carrier non-radiative recombination defects passivation formamidinecesium inverted perovskite solar cells
原文传递
A Cost-Effective D-A-D Type Hole-Transport Material Enabling 20% Efficiency Inverted Perovskite Solar Celis 被引量:2
17
作者 Jiachen Huang Jie Yang +5 位作者 Huiliang Sun Kui Feng Qiaogan Liao Bolin Li He Yan Xugang Guo 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第6期1545-1552,共8页
High-performance,cost-effective hole-transport materials(HTMs)are greatly desired for the commercialization of perovskite solar cells(PVSCs).Herein,two new HTMs,TPA-FO and TPA-PDO,are devised and synthesized,which hav... High-performance,cost-effective hole-transport materials(HTMs)are greatly desired for the commercialization of perovskite solar cells(PVSCs).Herein,two new HTMs,TPA-FO and TPA-PDO,are devised and synthesized,which have a donor-acceptor-donor(D-A-D)type molecule design featuring carbonyl group-functionalized arenes as the acceptor(A)units.The carbonyl group at the central core of HTMs can not only tune frontier molecular orbital(FMO)energy levels and surface wettability,but also can enable efficient surface passivation effects,resulting in reduced recombination loss.When employed as HTMs in inverted PVSCs without using dopant,TPA-FO with one carbonyl group yields a high power conversion efficiency(PCE)of 20.24%,which is among the highest values reported in the inverted PVSCs with dopant-free HTMs.More importantly,the facile one-step synthetic process enables a low cost of 30 USD g^(-1) for TPA-FO,much cheaper than the most studied HTMs used for high-efficiency dopant-free PVSCs.These results demonstrate the potential of D-A-D type molecules with carbonyl group-functionalized arene core in developing the low-cost dopant-free HTMs toward highly efficient PVSCs. 展开更多
关键词 Energy conversion Donor-acceptor systems INTERFACES Hole-transport materials Inverted perovskite solar cells
原文传递
Electrodeposited transparent PEDOT for inverted perovskite solar cells:improved charge transport and catalytic performances 被引量:2
18
作者 Cong-Tan Zhu Ying Yang +4 位作者 Fei-Yu Lin Yuan Luo Shu-Peng Ma Liu Zhu Xue-Yi Guo 《Rare Metals》 SCIE EI CAS CSCD 2021年第9期2402-2414,共13页
The acidic, corrosive effect of sodium polystyrene sulfonate(PSS) in poly 3,4-ethylenedioxythiophene:sodium polystyrene sulfonate(PEDOT:PSS) limits the stability of inverted perovskite solar cells(PSCs) based on the I... The acidic, corrosive effect of sodium polystyrene sulfonate(PSS) in poly 3,4-ethylenedioxythiophene:sodium polystyrene sulfonate(PEDOT:PSS) limits the stability of inverted perovskite solar cells(PSCs) based on the ITO/PEDOT:PSS/perovskite/PCBM/BCP/Ag structure. In this work, a poly 3,4-ethylenedioxythiophene(PEDOT) hole transport layer(HTL) with high hole mobility and good catalytic performance was prepared by electrochemical cyclic voltammetry(CV) method for inverted PSCs. By controlling the CV cycles(from 1 to 5 cycles) and EDOT monomer solution concentration(from0.5 to 2.0 mmol·L^(-1)) of electrochemical deposition, the thickness, morphology, optical and electrochemical properties of PEDOT could be accurately adjusted. The optimal photovoltaic performance with current density(J_(sc)) of 22.19 mA·cm^(-2), open circuit voltage(V_(oc)) of 0.94 V, fill factor(FF) of 0.65 and photoelectric conversion efficiency of 13.56% was obtained when deposition of PEDOT with 1 CV cycle and EDOT concentration of 0.5 mmol·L^(-1). At this point, the perovskite showed good crystallization,optimal optical, charge transport and recombination performance, resulting in better V_(oc)and photoelectric conversion efficiency(PCE) compared to the devices with higher CV cycle numbers and 3,4-ethylenedioxythiophene(EDOT) concentration. For comparison with spin-coated PEDOT:PSS, the device with electrodeposited PEDOT showed improved J_(sc)and comparable V_(oc), which may result from its better charge transport and catalytic ability.The device with spin-coated PEDOT:PSS showed photoelectric conversion efficiency of 12.25%, which was lower than that based on electrodeposited PEDOT(13.56%) with1 CV cycles and 0.5 mmol·L^(-1) EDOT concentration. And the device with electrodeposited PEDOT as HTLs showed more excellent air stability. In ambient air((32 ± 5) ℃ and RH: 70% ± 20%), it still maintained more than 80%of the initial photoelectric conversion efficiency after1000 h. In comparison, the photoelectric conversion efficiency of the device with PEDOT:PSS decreased to 20% of the initial value after storage for 500 h. From this study, a facial and low-cost way to prepare PEDOT HTL with high performances that better than the traditional PEDOT:PSS has been explored, which is expected to eliminate the acidic, corrosive effect of PSS in PEDOT:PSS. 展开更多
关键词 Electrochemically cyclic voltammetry Inverted perovskite solar cells Electrodeposited PEDOT Hole mobility Tafel analysis
原文传递
Hydrogen-Bonded Dopant-Free Hole Transport Material Enables Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
19
作者 Rui Li Chongwen Li +9 位作者 Maning Liu Paola Vivo Meng Zheng Zhicheng Dai Jingbo Zhan Benlin He Haiyan Li Wenjun Yang Zhongmin Zhou Haichang Zhang 《CCS Chemistry》 CAS 2022年第9期3084-3094,共11页
Although many dopant-free hole transport materials(HTMs)for perovskite solar cells(PSCs)have been investigated in the literature,novel and useful molecular designs for high-performance HTMs are still needed.In this wo... Although many dopant-free hole transport materials(HTMs)for perovskite solar cells(PSCs)have been investigated in the literature,novel and useful molecular designs for high-performance HTMs are still needed.In this work,a hydrogen-bonding association system(NH⋯CO)between amide and carbonyl is introduced into the pure HTM layer. 展开更多
关键词 hydrogen bonding dopant-free hole transport material inverted perovskite solar cell high efficiency stability
原文传递
Subtle side chain modification of triphenylamine‐based polymer hole‐transport layer materials produces efficient and stable inverted perovskite solar cells 被引量:1
20
作者 Yue-Min Xie Qin Yao +7 位作者 Qifan Xue Zixin Zeng Tianqi Niu Yingzhi Zhou Ming-Peng Zhuo Sai-Wing Tsang Hin-Lap Yip Yong Cao 《Interdisciplinary Materials》 2022年第2期281-293,共13页
Polymer hole-transport layers(HTLs)are critical components of inverted perovskite solar cells(IPVSCs).Triphenylamine derivatives PTAA(poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine])and Poly-TPD(poly[N,N′-bis(4-butyl... Polymer hole-transport layers(HTLs)are critical components of inverted perovskite solar cells(IPVSCs).Triphenylamine derivatives PTAA(poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine])and Poly-TPD(poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine])have been widely adopted as hole-transport materials due to their perovskite passivation effects and suitable energy levels.However,the passivation mechanism(i.e.,the functional group responsible for perovskite passivation)of triphenylamine derivative polymers remains unclear,hindering the development and application of this polymer type.Here,we develop a novel Poly-TPD derivative,S-Poly-TPD,by replacing the n-butyl functional group of Poly-TPD with an isobutyl group to explore the influence of alkyl groups on HTL performance and top-deposited perovskite properties.Compared with Poly-TPD,the increased CH_(3)-terminal unit density and the decreased spatial distance between the-CH-CH_(3) and-CH_(2)-CH_(3) units and the benzene ring in S-Poly-TPD not only enhanced the hole-transport ability but also improved the perovskite passivation effect,revealing for the first time the role of the alkyl groups in perovskite passivation.As a result,the S-Poly-TPD-based IPVSCs demonstrated high power-conversion efficiencies of 15.1% and 21.3% in wide-bandgap[MAPbI_(2)Br(SCN)0.12]and normal-bandgap[(FAPbI_(3))0.92(MAPbBr_(3))0.08]devices,respectively. 展开更多
关键词 alkyl group inverted perovskite solar cells(IPVSCs) perovskite passivation polymer hole transport layers(HTLs) Poly-TPD PTAA
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部