期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Growth of Micropropagated Solanum tuberosum L.Plantlets under Artificial Solar Spectrum and Different Mono-and Polychromatic LED Lights
1
作者 Olga V.Grishchenko Eugeny P.Subbotin +7 位作者 Irina V.Gafitskaya Yulia V.Vereshchagina Elena V.Burkovskaya Yulia A.Khrolenko Valeria P.Grigorchuk Olga V.Nakonechnaya Victor P.Bulgakov Yuri N.Kulchin 《Horticultural Plant Journal》 SCIE CSCD 2022年第2期205-214,共10页
In agriculture,LED light sources have increasingly replaced the standard luminescent lamps and have acquired an important role in plant micropropagation.We studied the effect of different light sources such as narrow-... In agriculture,LED light sources have increasingly replaced the standard luminescent lamps and have acquired an important role in plant micropropagation.We studied the effect of different light sources such as narrow-band LEDs(bright blue,blue,green,yellow,deep red,and red)and wide-band LEDs(cold white,white,warm white,full spectrum,and an artificial solar spectrum sun box constructed by us)on development of potato plantlets in vitro.White luminescent lamps were used as a control.The light intensity of 49μmol·m^(-2)·s^(-1)was provided in all light treatments.We showed that the long-wave narrow-band light treatments were inapplicable for potato micropropagation,because plantlets were weak with small leaves,inhibited roots,and significantly elongated stems.Blue lights provided growth of shortened plantlets with large leaves,well-growing roots,and abundant green mass.The chlorophyll content was lower under blue and bright blue light and was at the same level in the remained treatments.Significant differences in the stomatal apparatus development were observed depending on the light source.These differences were not always reflected in the plantlet phenotype:e.g.,plantlets under blue and bright blue lights showed no differences in any characteristics except stomatal density and size of stomatal guard cells.We found no significant effect of blue light portion in the white lights and full spectrum on plantlet growth.An artificial solar spectrum sun box was the most suitable for potato micropropagation,because it supported the development of plantlets with good fitness,uniform internodes length,abundant roots and green mass accumulation. 展开更多
关键词 Solanum tuberosum LED Artificial solar light GROWTH MICROPROPAGATION
下载PDF
In-situ decoration of metallic Bi on BiOBr with exposed(110)facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane 被引量:6
2
作者 Qingqing Yu Jiangyao Chen +4 位作者 Yanxu Li Meicheng Wen Hongli Liua Guiying Li Taicheng An 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1603-1612,共10页
Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is st... Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is still rare.Here,a series of Bi/BiOBr composites were solvothermally synthe-sized and applied in solar-light-driven photocatalytic degradation of gaseous n-hexane.The charac-terization results revealed that both increasing number of functional groups of alcohol solvent(from methanol and ethylene glycol to glycerol)and solvothermal temperature(from 160 and 180to 200℃)facilitated the in-situ formation of metallic Bi nanospheres on BiOBr nanoplates withexposed(110)facets.Meanwhile,chemical bonding between Bi and BiOBr was observed on theseexposed facets that resulted in the formation of surface oxygen vacancy.Furthermore,the synergis-tic effect of optimum surface oxygen vacancy on exposed(110)facets led to a high visible light re-sponse,narrow band gap,great photocurrent,low recombination rate of the charge carriers,andstrong·O2-and h*formation,all of which resulted in the highest removal efficiency of 97.4%within120 min of 15 ppmv of n-hexane on Bi/BiOBr.Our findings efficiently broaden the application ofBi-based photocatalysis technology in the purification of gaseous straight-chain pollutants emittedby the petrochemical industry. 展开更多
关键词 Bi/BiOBr composite Exposed(110〕facet surface oxygen vacancy solar light photocatalysis Degradation of gaseous alkane
下载PDF
Solar light,seawater temperature,and nutrients,which one is more important in affecting phytoplankton growth? 被引量:4
3
作者 苗振清 杨东方 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第4期825-831,共7页
Based on research results on the impacts of solar light,seawater temperature,and nutrient available to phytoplankton growth and changes in phytoplankton physiology and assemblage,we discussed the order of influence of... Based on research results on the impacts of solar light,seawater temperature,and nutrient available to phytoplankton growth and changes in phytoplankton physiology and assemblage,we discussed the order of influence of these factors.By clarifying the mechanisms and processes of the impacts by these factors,we have determined the rising order of the importance as solar light,seawater temperature,and nutrient silicon (Si).Therefore,for human interests in sustaining economic development,the first thing to be considered is the input of nutrient Si into the ocean,followed by seawater temperature change. 展开更多
关键词 solar light seawater temperature nutrient Si phytoplankton growth and assemblage structure order of importance
下载PDF
Recent advances in Cu-based nanocomposite photocatalysts for CO_2 conversion to solar fuels 被引量:2
4
作者 Huan Xie Jingyun Wang +2 位作者 Kemakorn Ithisuphalap Gang Wu Qing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1039-1049,共11页
COconversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of COt... COconversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of COto useful solar fuels such as CO, CH, CHOH, and CHOH. Among studied formulations, Cubased photocatalysts are the most attractive for COconversion because the Cu-based photocatalysts are low-cost and abundance comparing noble metal-based catalysts. In this literature review, a comprehensive summary of recent progress on Cu-based photocatalysts for COconversion, which includes metallic copper, copper alloy nanoparticles(NPs), copper oxides, and copper sulfides photocatalysts, can be found. This review also included a detailed discussion on the correlations of morphology, structure, and performance for each type of Cu-based catalysts. The reaction mechanisms and possible pathways for productions of various solar fuels were analyzed, which provide insight into the nature of potential active sites for the catalysts. Finally, the current challenges and perspective future research directions were outlined, holding promise to advance Cu-based photocatalysts for COconversion with much-enhanced energy conversion efficiency and production rates. 展开更多
关键词 Cu-based photocatalyst CO_2 conversion solar light solar fuels Quantum efficiency
下载PDF
In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell 被引量:3
5
作者 Xiaoli Zheng Zhanhua Wei +4 位作者 Haining Chen Yang Bai Shuang Xiao Teng Zhang Shihe Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期736-743,共8页
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t... We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability. 展开更多
关键词 Dual porous TiO2 film Carbon cathode Perovskite solar cell Light scattering Charge transport
下载PDF
Layered-stacking of titania films for solar energy conversion:Toward tailored optical,electronic and photovoltaic performance 被引量:1
6
作者 Wu-Qiang Wu Jin-Feng Liao Dai-Bin Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期690-702,共13页
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver... Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process. 展开更多
关键词 TiO2 Charge transport Light scattering Power conversion efficiency solar cells
下载PDF
Solar photocatalytic pathogenic disinfection:Fundamentals to state-of-the-art
7
作者 Leena V.Bora 《Water Science and Engineering》 EI CAS CSCD 2023年第2期132-142,共11页
It is necessary to treat pathogen-infected water before its utilisation.Of conventionally used treatment methods,solar photocatalysis has gained considerable momentum owing to its operational simplicity and capacity t... It is necessary to treat pathogen-infected water before its utilisation.Of conventionally used treatment methods,solar photocatalysis has gained considerable momentum owing to its operational simplicity and capacity to use freely and abundantly available solar energy.This article systematically reviewed the disinfection of water with photocatalysis.It addressed the concerns of microbial infection of water and the fundamentals behind its treatment with photocatalysis.It presented an in-depth description of pathogenic deactivation with powerful reactive oxygen species.Special emphasis was given to process intensification as it is an attractive technique that provides multifunctionality and/or equipment miniaturisation.Solar reactor design regarding mobilised/immobilised photocatalysts and compound parabolic concentrators were elucidated.Finally,key parameters governing photoperformance,corresponding trade-offs,and the need for their optimisation were discussed.Overall,this article is a single point of reference for researchers,environmentalists,and industrialists who address the ever-severing challenge of providing clean water whilst also maintaining energy sustainability. 展开更多
关键词 Water solar light Photocatalysis PATHOGEN E.coli INTENSIFICATION PHOTOREACTOR DISINFECTION
下载PDF
Preparation of Rectorite-TiO_2 and Its Application in the Solar Photocatalytic Degradation of Dye Wastewater
8
作者 DENG Deming NIE Qiyang CHENG Kang LI Fugui GAN Fuxing 《Wuhan University Journal of Natural Sciences》 CAS 2007年第2期367-371,共5页
A photocatalyst consisting of TiO2 powder and rectorite was prepared and activated utilizing solar light and used for degradation of simulated dye wastewater (methyl solution). The effects of roasting temperature, t... A photocatalyst consisting of TiO2 powder and rectorite was prepared and activated utilizing solar light and used for degradation of simulated dye wastewater (methyl solution). The effects of roasting temperature, the way of adding rectorite, and the amount of the rectorite on the photocatalytic activity have been investigated. The results indicated that rectorite-TiO2 photocatalyst prepared with the right proportional amount of rectorite and titanium dioxide, could effectively degrade the methyl orange solution in sunlight. After reacting in sunlight for 8 hours, the methyl orange decolorization reached 96%. The photocatalytic activity of rectorite-TiO2 was much better than that of TiO2 in sunlight. 展开更多
关键词 RECTORITE titanium dioxide photocatalytic activity solar light
下载PDF
Morphology-Controlled Synthesis of ZnxCd1-xS Solid Solutions: An Efficient Solar Light Active Photocatalyst for the Degradation of 2,4,6-Trichlorophenol
9
作者 Rengaraj Selvaraj Kezhen Qi +6 位作者 Sathish Babu Soundra Pandian Mohammed A. Meetani Bushra Al Wahaibi Haider Al Lawati Salma M. Z. Al Kindy Younghun Kim Mika Sillanpää 《Journal of Environmental Protection》 2016年第11期1605-1617,共13页
Znx</sub>Cd1-x</sub>S solid solutions with controlled morphology have been successfully synthe-sized by a facile solution-phase method. The prepared samples were characterized by X-ray powder diffraction (... Znx</sub>Cd1-x</sub>S solid solutions with controlled morphology have been successfully synthe-sized by a facile solution-phase method. The prepared samples were characterized by X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectra, X-ray photoelec-tron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission elec-tron microscopy (TEM). The photocatalytic activity of Zn<sub>x</sub>Cd<sub>1-x</sub>S was evaluated in the 2,4,6-trichlorophenol (TCP) degradation and mineralization in aqueous solution under direct solar light illumination. The experiment demonstrated that TCP was effectively degraded by more than 95% with 120 min. The results show that ZnS with Cd doping (Znx</sub>Cd1-x</sub>S) exhibits the much stronger visible light adsorption than that of pure ZnS, the light adsorption increasing as the Cd<sup>2+</sup> doping amount. These results indicate that Cd doping into a ZnS crystal lattice can result in the shift of the valence band of ZnS to a positive direction. It may lead to its higher oxidative ability than pure ZnS, which is important for organic pollutant degradation under solar light irradiation. Further-more, the photocatalytic activity studies reveal that the prepared Znx</sub>Cd1-x</sub>S nanostructures exhibit an excellent photocatalytic performance, degrading rapidly the aqueous 2,4,6-trichlorophenol solution under solar light irradiation. These results sug-gest that Znx</sub>Cd1-x</sub>S nanostructure will be a promising candidate of photocatalyst working in solar light range. 展开更多
关键词 PHOTOCATALYST Nanostructures Solution Phase 2 4 6-Trichlorophenol solar Light Photocatalytic Activity
下载PDF
The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle 被引量:15
10
作者 Jinhua Luo Zhexing Lin +2 位作者 Yan Zhao Shujuan Jiang Shaoqing Song 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期122-130,共9页
It is still a great challenge to effectively optimize the electronic structure of photocatalysts for the sustainable and efficient conversion of solar energy to H2 energy.To resolve this issue,we report on the optimiz... It is still a great challenge to effectively optimize the electronic structure of photocatalysts for the sustainable and efficient conversion of solar energy to H2 energy.To resolve this issue,we report on the optimization of the electronic structure of hollow-concave carbon nitride(C3N4)by deviating the sp2-hybridized structure of its tri-s-triazine component from the two-dimensional plane.The embedded CuInS2 into C3N4(CuInS2@C3N4)demonstrates an increased light-capturing capability and the promoted directional transfer of the charge carrier.Research results reveal that the hollow structure with an apparent potential difference between the concave and convex C3N4 drives the directional transfer of the photoinduced electrons from the Cu 2p orbital of CuInS2 to the N 1s orbital of C3N4 with the S-scheme principle.The H2 evolution efficiency over CuInS2@C3N4 is up to 373μmol?h^-1 g^-1 under visible irradiation,which is 1.57 and 1.35 times higher than those over the bulk g-C3N4 with 1 wt%Pt(238μmol?h^-1 g^-1)and g-C3N4 with 3 wt%Pd(276μmol?h^-1 g^-1),respectively.This suggests that the apparent potential difference of the hollow C3N4 results in an efficient reaction between the photogenerated electrons and H2O.This work supplies a new strategy for enhancing the sustainable solar conversion performance of carbon nitride,which can also be suitable for other semiconductors. 展开更多
关键词 Hollow carbon nitride Hydrogen evolution solar light absorption Directional charge transfer Apparent potential difference
下载PDF
Synergistic effects of carbon doping and coating of TiO_(2) with exceptional photocurrent enhancement for high performance H2 production from water splitting 被引量:2
11
作者 Yingying Wang Yan-Xin Chen +7 位作者 Tarek Barakat Tian-Ming Wang Alain Krief Yu-Jia Zeng Marvin Laboureur Luca Fusaro Hong-Gang Liao Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期141-151,共11页
The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boos... The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boost textural,optical and electronic properties and photocurrent of TiO_(2) for high performance visible light H2 production from water splitting has been comprehensively investigated.Carbon doping can significantly increase the thermal stability,thus inhibiting the phase transformation of the Titania material from anatase to rutile while carbon coating can suppress the grain aggregation of TiO_(2).The synergy of carbon doping and coating can not only ensure an enhanced narrowing effect of the electronic band gap of TiO_(2) thus extending the absorption of photocatalysts to the visible regions,but also promote dramatically the separation of electron-hole pairs.Owing to these synergistic effects,the carbon coated and doped TiO_(2) shows much superior photocatalytic activity for both degradation of organics and photocatalytic/photoelectro chemical(PEC)water splitting under simulated sunlight illumination.The photocatalytic activity of obtained materials can reach 5,4 and 2 times higher than that of pristine TiO_(2),carbon doped TiO_(2) and carbon coated TiO_(2),respectively in the degradation of organic pollutants.The carbon coated and doped TiO_(2) materials exhibited more than 37 times and hundreds of times photocurrent enhancement under simulated sunlight and visible light,respectively compared to that of pristine TiO_(2).The present work providing new comprehensive understanding on carbon coating and doping effect could be very helpful for the development of advanced TiO_(2) materials for a large series of applications. 展开更多
关键词 Carbon coating and doping TiO_(2) ONE-POT PEC water splitting solar light photocatalysis
下载PDF
TiO_2 photocatalytic antifungal technique for crops diseases control 被引量:1
12
作者 LU Jian-wei LI Fang-bai +3 位作者 GUO Ting LIN Lan-wen HOU Mei-fang LIU Tong-xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期397-401,共5页
TiO2 and 1% Ce^3+-TiO2 prepared by hydrothermal method were characterized by means of XRD and UV-visible diffusive reflectance spectra(DRS). The results of DRS analysis indicated that the 1% Ce^3+-TiO2 catalyst ha... TiO2 and 1% Ce^3+-TiO2 prepared by hydrothermal method were characterized by means of XRD and UV-visible diffusive reflectance spectra(DRS). The results of DRS analysis indicated that the 1% Ce^3+-TiO2 catalyst had significant optical absorption in the visible region between 400-450 nm because electrons could be excited from the valence band of TiO2 or cerium oxides to Ce 4f level. To investigate the photocatalytic activity of different catalysts for crop fungal disease control, a series of Quine tests were carried out for cucumber powdery mildew and litchi downy blight control in home-made photocatalytic reactor. The results showed that TiO2 photocatalysis technique should be effective to inhibit the growth of fungal diseases to some extent and P-25 had a higher activity for antifungal control than home-made TiO2 catalysts. TiO2-A prepared with Ti(SO4)2 is more active to contro 1 antifungal disease than TiO2-B prepared with TiOSO4 as precursor because the crystalline of TiO2-A was higher than that of TiO2-B. The antifungal index litchi downy blight control was greatly enhanced by doping 1% cerium ion. The antifungal index of 1.0%Ce3^+-TiO2 was(47.0 ± 4.7)%, (82.2 ± 3.5)%, (100 ±0.0)% under indoor weaker light, solar light and black light, respectively. The results of field experiments showed that the antifungal index of 1.0%Ce^3+-TiO2 was more than that of P-25. The antifungal index of 1.0%Ce^3+-TiO2 was (81.7 ± 6.5)%, (67.5 ±4.7)%, (38.6±1.9)% for litchi downy blight, maize southern leaf spot, and rice blast, respectively. It was concluded that TiO2 photocatalysis technique should be an effective way for litchi fungal disease control in practice. 展开更多
关键词 titanium dioxide PHOTOCATALYTIC fungal disease solar light litchi downy blight
下载PDF
Solar-assisted photocatalytic water splitting using defective UiO-66 solids from modulated synthesis
13
作者 Celia M.Rueda-Navarro María Cabrero-Antonino +8 位作者 Paula Escamilla Valentín Díez-Cabanes Dong Fan Pedro Atienzar Belén Ferrer Ignacio Vayá Guillaume Maurin Herme G.Baldoví Sergio Navalón 《Nano Research》 SCIE EI CSCD 2024年第5期4134-4150,共17页
Metal-organic frameworks(MOFs)are attracting increasing interests as photocatalysts for solar-driven hydrogen production from water.This paper reports on a comparative study of using either acetic acid(AA)or trifluoro... Metal-organic frameworks(MOFs)are attracting increasing interests as photocatalysts for solar-driven hydrogen production from water.This paper reports on a comparative study of using either acetic acid(AA)or trifluoroacetic acid(TFA)as the representative UiO-66 organic modulators for synthesizing visible light responsive UiO-66(Zr)-X(X:NH_(2) or NO_(2))photocatalysts for water splitting.The results show that photocatalytic hydrogen generation from a water/methanol mixture can be improved by varying the nature and amount of the modulator employed to prepare the different UiO-66(Zr)-X(X:NH_(2) or NO_(2))solid derivatives.UiO-66(Zr)-NH_(2) was the most active photocatalyst,followed by UiO-66(Zr)-NO_(2),both prepared with 12 equivalents of AA with respect to the organic ligand.This UiO-66(Zr)-NH_(2) solid was more active than the parent MOF in photocatalytic overall water splitting(OWS)(H_(2) and O_(2) production of 450 and 160μmol·g^(-1),respectively,in 5 h;apparent quantum yield(AQY)at 400 nm of 0.06%)in the absence of methanol and compares favourably with analogous reports.Information on the photocatalytic activity of the most active solids of both series was obtained by means of a series of techniques,including ultraviolet-visible(UV-vis)diffuse reflectance,X-ray photoelectron spectroscopy(XPS),laser flash photolysis(LFP),electron spin resonance(ESR),photoluminescence and photoelectrochemical measurements together with density functional theory(DFT)calculations.The results showed that organic acid modulators can be used to enhance the photocatalytic activity of missing linker UiO-66 defective materials in solar-powered water splitting. 展开更多
关键词 heterogeneous photocatalysis metal-organic frameworks(MOFs) UiO-66 materials carboxylic acid modulators water splitting solar light
原文传递
Degradation of Reactive Yellow 86 with photo-Fenton process driven by solar light 被引量:4
14
作者 Hideyuki Katsumata Syunya Koike +2 位作者 Satoshi Kaneco Tohru Suzuki Kiyohisa Ohta 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第9期1455-1461,共7页
The decolorization of Reactive Yellow 86 (RY 86), one of reactive azo dyes, was investigated in the presence of Fenton reagent under solar light irradiation. The decolorization rate was strongly influenced by pH, in... The decolorization of Reactive Yellow 86 (RY 86), one of reactive azo dyes, was investigated in the presence of Fenton reagent under solar light irradiation. The decolorization rate was strongly influenced by pH, initial concentrations of H202 and Fe(II), and so on. An initial concentration of 40 mg/L was decolored more than 90% after 20 min under optimum conditions. The activation energy of the solar photo-Fenton reaction was 1.50 kJ/mol for RY 86 in the temperature range of 10-60℃. In the kinetic study, the rate constant of RY 86 with OH- radicals could be estimated to be 1.7 × 10^10 L/(mol.sec). The decolorization efficiency of RY 86 under solar light irradiation was comparable to the artificial light irradiation. The decrease of TOC as a result of mineralization of RY 86 was observed during photo-Fenton process. The rate of RY 86 mineralization was about 83% under UV irradiation after 24 hr. The formation of chloride, sulfate, nitrate and ammonium ions as end-products was observed during the photocatalytic process. The decomposition of RY 86 gave two kinds of intermediate products. The degradation mechanism of RY 86 was proposed on the base of the identified intermediates. 展开更多
关键词 reactive azo dye photo-Fenton reaction solar light irradiation DECOLORIZATION MINERALIZATION
原文传递
Solar active fire clay based hetero-Fenton catalyst over a wide pH range for degradation of Acid Violet 7 被引量:3
15
作者 Inbasekaran Muthuvel Balu Krishnakumar Meenakshisundaram Swaminathan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第3期529-535,共7页
Fe(III) immobilized fire clay (Fe-FC) was prepared using ferric nitrate by solid state dispersion method and this hetero-Fenton catalyst was applied for the degradation of Acid Violet 7 (AV 7) under natural sunl... Fe(III) immobilized fire clay (Fe-FC) was prepared using ferric nitrate by solid state dispersion method and this hetero-Fenton catalyst was applied for the degradation of Acid Violet 7 (AV 7) under natural sunlight. The 26% ferric nitrate loaded fire clay was found to be most efficient. The experimental conditions such as solution pH, H2O2 concentration for efficient degradation of AV 7 have been determined. Unlike Fenton catalyst, Fe-FC is photoactive over a wide pH range of 3-7. This catalyst was found to be stable and reusable. The GC-MS analysis of experimental solutions during irradiation revealed the formation of 2,8-diaminonaphthalene-1,3,6- triol, 8-aminonaphthalene-1,2,3,6-tetrol, 2-aminonaphthalene-1,3,6,8-tetrol and 2-aminobenzene-1,3-diol/5-aminonbenzene-1,3-diol/ 2-aminobenzene-1,4-diol as intermediates. The 26% ferric nitrate loaded fire clay was characterized by XRD, ICP-AES, BET surface area, FT-IR, SEM-EDS and UV-DRS studies. 展开更多
关键词 hetero-Fenton degradation Acid Violet 7 fire clay wastewater treatment solar light
原文传递
Photocatalytic degradation of the diazo dye naphthol blue black in water using MWCNT/Gd,N,S-TiO_2 nanocomposites under simulated solar light 被引量:2
16
作者 Gcina Mamba Xavier Yangkou Mbianda Ajay Kumar Mishra 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第7期219-228,共10页
A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as... A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as titanium and nitrogen and sulphur source, respectively. Samples of varying gadolinium loadings(0.2%, 0.6%, 1.0% and3.0% Gd3+) relative to titania were prepared to investigate the effect of gadolinium loading and the amounts of carbon nanotubes, nitrogen and sulphur were kept constant for all the samples. Furthermore, the prepared nanocomposites were evaluated for the degradation of naphthol blue black(NBB) in water under simulated solar light irradiation. Higher degradation efficiency(95.7%) was recorded for the MWCNT/Gd,N,S-Ti O2(0.6% Gd)nanocomposites. The higher photocatalytic activity is attributed to the combined effect of improved visible light absorption and charge separation due to the synergistic effect of Gd,MWCNTs, N, S and Ti O2. Total organic carbon(TOC) analysis revealed a higher degree of complete mineralisation of naphthol blue black(78.0% TOC removal) which minimises the possible formation of toxic degradation by-products such as the aromatic amines. The MWCNT/Gd,N,S-Ti O2(0.6% Gd) was fairly stable and could be re-used for five times,reaching a maximum degradation efficiency of 91.8% after the five cycles. 展开更多
关键词 GADOLINIUM MWCNTS NBB Simulated solar light Tridoped titania
原文传递
Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light 被引量:2
17
作者 Qianyuan Wu Chao Li +4 位作者 Wenlong Wang Tao He Hongying Hu Ye Du Ting Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期118-127,共10页
Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading... Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter(DOM) was investigated in this study. Solar light significantly decreased the UV_(254) absorbance and fluorescence(FLU) intensity of reclaimed water.However, its effect on the dissolved organic carbon(DOC) value of reclaimed water was very limited. The decrease in the UV_(254) absorbance intensity and FLU excitation–emission matrix regional integration volume(FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV_(254) absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV_(254) absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV_(254) and FLU intensity were independent of light intensity. The peaks of the UV_(254) absorbance and FLU intensity with an apparent molecular weight(AMW) of 100 Da to 2000 Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change. 展开更多
关键词 Wastewater reclamation Fluorescence Ultraviolet absorbance solar light irradiation
原文传递
ZnO nanopowders and their excellent solar light/UV photocatalytic activity on degradation of dye in wastewater 被引量:2
18
作者 Yingying Lv Leshu Yu +1 位作者 Chungen Li Liusai Yang 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第1期142-149,共8页
Low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O nanopowders(NPs)would determine their practical application in purifying wastewater.In this contribution,ZnO NPs were scala... Low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O nanopowders(NPs)would determine their practical application in purifying wastewater.In this contribution,ZnO NPs were scalably synthesized via the simple reaction of Zn powder with H_2O vapor in autoclave.The structural,morphological and optical properties of the samples were systematically characterized by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectra,transmission electron microscopy,Micro-Raman,photoluminescence,and ultraviolet-visible spectroscopy.The as-prepared Zn O NPs are composed of nanoparticles with 100–150 nm in diameter,and have a small Brunauer-Emmett-Teller surface area of 6.85 m^2/g.The formation of Zn O nanoparticles is relative to the peeling of H_2 release.Furthermore,the product has big strain-stress leading to the red-shift in the band gap of product,and shows a strong green emission centered at 515 nm revealing enough atomic defects in Zn O NPs.As a comparison with P25,the obtained dust gray Zn O NPs have a strong absorbance in the region of 200–700 nm,suggesting the wide wave-band utilization in sunlight.Based on the traits above,the Zn O NPs show excellent photocatalytic activity on the degradation of rhodamine B(Rh-B)under solar light irradiation,close to that under UV irradiation.Importantly,the Zn O NPs could be well recycled in water due to the quick sedimentation in themselves in solution.The low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O NPs endow themselves with promising application in purifying wastewater. 展开更多
关键词 ZnO nanopowders Zn powder photocatalyst solar light degradation
原文传递
Operation strategy and energy-saving of the solar lighting/heating system through spectral splitting
19
作者 Chao Shen Kaijie Zheng +2 位作者 Changyun Ruan Guoquan Lv Mahroo Eftekhari 《Energy and Built Environment》 2023年第3期270-280,共11页
The performance of a solar lighting and heating system(SLHS)based on the spectral splitting effect of nanofluids is presented in this paper.SLHS through nanofluids would split the sunlight spectrum into different wave... The performance of a solar lighting and heating system(SLHS)based on the spectral splitting effect of nanofluids is presented in this paper.SLHS through nanofluids would split the sunlight spectrum into different wavelength,and then introduce the visible light into the offices for lighting and absorb infrared energy to generate hot water.The Energy Plus software was used to analyze the energy consumption of typical office building located in the city of Harbin in China coupled with SLHS.Based on the simulation results two lighting zones were identified in the offices and the optimal lighting control strategy was developed for a full year.The performance models of SLHS with different light-receiving areas of 10 m^(2)and 40 m^(2)were simulated and validated using the existing experimental data.The overall energy-saving of the offices over a full year were analyzed using the validated model.Results demonstrated that for SLHS with the area of 40 m^(2),the rate of the energy saving in the offices due to lighting and hot water systems were 58.9%,and 19.3%,respectively.The system also had the additional benefit of reducing the cooling load of the air conditioning system during summer period together with improving the quality of the indoor environment resulting in better health and productivity of the occupants. 展开更多
关键词 Office building Energy consumption solar lighting/heating Lighting control strategy Energy-saving benefits
原文传递
Modeling and investigating the detailed characteristics of solar lighting/heating system based on spectrum split of nanofluids
20
作者 Chao Shen Guoquan Lv +3 位作者 Kaijie Zheng Changyun Ruan Chunxiao Zhang Yu Dong 《Energy and Built Environment》 2022年第1期30-39,共10页
Solar lighting technologies can lead sunlight into indoor actively,which has been proved that has great potential to reduce electric lighting consumption and create a healthy visual environment.In this paper,a mathema... Solar lighting technologies can lead sunlight into indoor actively,which has been proved that has great potential to reduce electric lighting consumption and create a healthy visual environment.In this paper,a mathematics model was developed to explore performance characteristics and economic applicability of solar lighting/heating system that combine ordinary solar lighting system with nanofluids to spectroscopically utilize sunlight.The results show that the luminous efficiency of output visible light can reach at 242 lm/W,which is 1.62-2.42 times higher than that of current LED light.Moreover,it can be found that the energy-saving capacity of this system is remarkable when used in most areas of China.As for Harbin,its annual total solar radiation ranges 4190 MJ/m^(2)to 5020 MJ/m^(2),the system’s annual output energy(per square meter of collection area)is 188.15 kW·h for daylighting and 248.2 kW•h for domestic hot water.Besides,the integrated using of infrared radiation can improve the economy of solar lighting technologies by calculating the comprehensive price of unit output energy. 展开更多
关键词 solar lighting solar energy Full spectrum Nanofluids
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部