Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delive...Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.展开更多
Recently,solution-processed organic solar cells combining small-molecule donor and nonfullerene acceptor have achieved breakthrough results with the certified efficiency over 15%.These impressive progresses are driven...Recently,solution-processed organic solar cells combining small-molecule donor and nonfullerene acceptor have achieved breakthrough results with the certified efficiency over 15%.These impressive progresses are driven by the concerted efforts of modifying the donor and acceptor materials and optimizing the morphology.Considering the defined chemical structures and easily tuned properties of small-molecule materials,it is of great necessity and importance to pay more attentions on the topic of all-small molecule organic solar cells.Here,we summarize the recent progress of all-small molecule organic solar cells from the prospect of materials'evolutions and expect to provide some hints for its future developments.The involved small-molecule donors including oligothiophene-,benzodithiophene-,naphthodithiophene-,and porphyrin-based materials are discussed to illustrate the relationship of chemical structures,properties,and device performance.Then,the small-molecule nonfullerene acceptors in all-small molecules organic solar cells are discussed to highlight their vital role.Finally,we will present the challenges and future of this research area.展开更多
Five novel donor-acceptor (D-A) conjugated cooligomers (F4B-hP, F5B-hP, F5B2[1,2]-hP, F5B2[I,3]-hP and F7B2[1,2]-hP) were synthesized. The absorption spectra of the cooligomers cover a wide range from 300 nm to 63...Five novel donor-acceptor (D-A) conjugated cooligomers (F4B-hP, F5B-hP, F5B2[1,2]-hP, F5B2[I,3]-hP and F7B2[1,2]-hP) were synthesized. The absorption spectra of the cooligomers cover a wide range from 300 nm to 630 nm. The cooligomers could form films featured by alternating D-A lamellar nanostructures with the periods relative to the molecular lengths after thermal annealing or solvent vapor annealing. Single molecule solar cells were fabricated, and FSB-hP exhibited the best device performance. When the film of FSB-hP was thermally annealed, a power conversion efficiency (PCE) of 1.56% was realized. With solvent vapor annealing, the PCE could be further improved to 1.72% with a short-circuit current (J_SC) of 5.76 mA/cm2, an open-circuit voltage (Voc) of 0.87 V and a fill factor (FF) of 0.34.展开更多
Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate th...Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells(OSCs). The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films. The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71 BM as the acceptor, the power conversion efficiency(PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%, respectively. However, by blending with IDIC, the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs, and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and9.06%, respectively. These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.展开更多
Under the synergistic effect of molecular design and devices engineering, small molecular organic solar cells have presented an unstoppable tendency for rapid development with putting forward donor- acceptor (D-A) s...Under the synergistic effect of molecular design and devices engineering, small molecular organic solar cells have presented an unstoppable tendency for rapid development with putting forward donor- acceptor (D-A) structures. Up to now, the highest power conversion efficiency of small molecules has exceeded 11%, comparable to that of polymers. In this review, we summarize the high performance small molecule donors in various classes of typical donor-acceptor (D-A) structures and discuss their relationships briefly.展开更多
Recently, the fused-ring based low band gap (LBG) small molecule acceptors (SMAs) have emerged as efficient nonfullerene acceptors. So far, these LBG SMAs are mainly designed with IC (2-methylene-(3- (1,1 -dicy...Recently, the fused-ring based low band gap (LBG) small molecule acceptors (SMAs) have emerged as efficient nonfullerene acceptors. So far, these LBG SMAs are mainly designed with IC (2-methylene-(3- (1,1 -dicyanomethylene)indanone)) or its analogs, the benzo-type electron-accepting (A) units. Compared to benzene, thiophene is less aromatic and thus the thiophene-involving semiconducting molecule has more quinoidal character, which effectively reduces the energy gap between the highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO). Herein, we show that replacing the IC units in ITIC with the CT (cyclopenta[c]thiophen-4-one-5-methylene-6-(1,1-dicyano- methylene)), a thiophene-fused A unit, the quinoidal character is enhanced from 0.0353 on ITIC to 0.0349 on ITCT, the CT-ended SMA. The increase in the quinoidal character reduces the optical band gap and enhances the near IR absorptivity. When blended with the wide band gap (WBG) polymer donor, PBDB-T, an average power conversion efficiency of 10.99% is obtained with a short-circuit current-density (Jso) of 17.88 mA/cm2 and a fill-factor (FF) of 0.723. For comparisons, theJsc is of 16.92 mA/cm2, FF is of 0.655 and PCE is of 9.94% obtained from the ITIC:PBDB-T device. This case indicates that the replacement of the benzene ring on the IC unit with a more polarizable five-member ring such as thiophene is an effective way to enhance the absorption of the near IR solar photons towards designing high-performance nonfullerene polymer solar cells.展开更多
In this work,a sky-blue luminescent down-shifting(LDS)layer bis[(4,6-difluorophenyl)-pyridinato-N,C^(2')]c(picolinate)iridium(II)(FIrpic)was inserted between tetraphenyl dibenzoperiflanthene(DBP)and Mo0_(3)as UV-s...In this work,a sky-blue luminescent down-shifting(LDS)layer bis[(4,6-difluorophenyl)-pyridinato-N,C^(2')]c(picolinate)iridium(II)(FIrpic)was inserted between tetraphenyl dibenzoperiflanthene(DBP)and Mo0_(3)as UV-screen and sensitizer for smallmolecule DBP/C_(60)based planar heterojunction(PHJ)solar cells.With 8-nm Flrpic theshort circuit current(J_(sc))and power conversion efficiency(PCE)of the device areenhanced by 28%and 15%,respectively,probably originating from the re-absorption ofthe photons emitted from Flrpic.The V_(oc)linearly increases over 1-nm Flrpic,ascribed tothe deeper HOMO level of Flrpic than DBP,while the fill factor continuously declines from 3-to 10-nm Flrpic.The EQE spectra prove that the J_(sc)is mainly contributed by thephotocurrent generated in DBP and C_(60)layers.When the FIrpic thickness is 8 nm,the filmsurface is very uniform with the smallest water contact angle.The impedance spectro-scopy demonstrates that the device resistance gradually increases from 4.1×10^(4)Ω(without Flrpic)to 4.6×10^(4)Ω(with 10-nm Flrpic)with the FIrpic thickness rise,simultaneously the device transits from the insulating state into the conductive statefaster for the thin Flrpic layer than the thick layer.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61325026,51503209)the Natural Science Foundation of Fujian Province(No.2015H0050)
文摘Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.
基金the financial support from the Office of Naval Research(N00014-17-1-2260 and N00014-20-1-2191).
文摘Recently,solution-processed organic solar cells combining small-molecule donor and nonfullerene acceptor have achieved breakthrough results with the certified efficiency over 15%.These impressive progresses are driven by the concerted efforts of modifying the donor and acceptor materials and optimizing the morphology.Considering the defined chemical structures and easily tuned properties of small-molecule materials,it is of great necessity and importance to pay more attentions on the topic of all-small molecule organic solar cells.Here,we summarize the recent progress of all-small molecule organic solar cells from the prospect of materials'evolutions and expect to provide some hints for its future developments.The involved small-molecule donors including oligothiophene-,benzodithiophene-,naphthodithiophene-,and porphyrin-based materials are discussed to illustrate the relationship of chemical structures,properties,and device performance.Then,the small-molecule nonfullerene acceptors in all-small molecules organic solar cells are discussed to highlight their vital role.Finally,we will present the challenges and future of this research area.
基金financially supported by the National Basic Research Program of China(973 Project,No.2009CB939702)of Chinese Ministry of Science and TechnologyNSFC(Nos.20921061 and 50833004)
文摘Five novel donor-acceptor (D-A) conjugated cooligomers (F4B-hP, F5B-hP, F5B2[1,2]-hP, F5B2[I,3]-hP and F7B2[1,2]-hP) were synthesized. The absorption spectra of the cooligomers cover a wide range from 300 nm to 630 nm. The cooligomers could form films featured by alternating D-A lamellar nanostructures with the periods relative to the molecular lengths after thermal annealing or solvent vapor annealing. Single molecule solar cells were fabricated, and FSB-hP exhibited the best device performance. When the film of FSB-hP was thermally annealed, a power conversion efficiency (PCE) of 1.56% was realized. With solvent vapor annealing, the PCE could be further improved to 1.72% with a short-circuit current (J_SC) of 5.76 mA/cm2, an open-circuit voltage (Voc) of 0.87 V and a fill factor (FF) of 0.34.
基金supported by the Ministry of Science and Technology of China (2014CB643501)the National Natural Science Foundation of China (21325419, 51373181, 91333204, 91633301)
文摘Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells(OSCs). The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films. The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71 BM as the acceptor, the power conversion efficiency(PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%, respectively. However, by blending with IDIC, the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs, and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and9.06%, respectively. These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.
基金supported by the National Natural Science Foundation of China (Nos. 21474022, 51603051)Youth Innovation Promotion Association CAS and Beijing Nova Program (No. Z171100001117062)the Chinese Academy of Sciences
文摘Under the synergistic effect of molecular design and devices engineering, small molecular organic solar cells have presented an unstoppable tendency for rapid development with putting forward donor- acceptor (D-A) structures. Up to now, the highest power conversion efficiency of small molecules has exceeded 11%, comparable to that of polymers. In this review, we summarize the high performance small molecule donors in various classes of typical donor-acceptor (D-A) structures and discuss their relationships briefly.
基金the financial support from the National Natural Science Foundation of China(NSFC, Nos. 91433202, 91227112 and 21221002)Chinese Academy of Sciences(CAS, No. XDB12010200)
文摘Recently, the fused-ring based low band gap (LBG) small molecule acceptors (SMAs) have emerged as efficient nonfullerene acceptors. So far, these LBG SMAs are mainly designed with IC (2-methylene-(3- (1,1 -dicyanomethylene)indanone)) or its analogs, the benzo-type electron-accepting (A) units. Compared to benzene, thiophene is less aromatic and thus the thiophene-involving semiconducting molecule has more quinoidal character, which effectively reduces the energy gap between the highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO). Herein, we show that replacing the IC units in ITIC with the CT (cyclopenta[c]thiophen-4-one-5-methylene-6-(1,1-dicyano- methylene)), a thiophene-fused A unit, the quinoidal character is enhanced from 0.0353 on ITIC to 0.0349 on ITCT, the CT-ended SMA. The increase in the quinoidal character reduces the optical band gap and enhances the near IR absorptivity. When blended with the wide band gap (WBG) polymer donor, PBDB-T, an average power conversion efficiency of 10.99% is obtained with a short-circuit current-density (Jso) of 17.88 mA/cm2 and a fill-factor (FF) of 0.723. For comparisons, theJsc is of 16.92 mA/cm2, FF is of 0.655 and PCE is of 9.94% obtained from the ITIC:PBDB-T device. This case indicates that the replacement of the benzene ring on the IC unit with a more polarizable five-member ring such as thiophene is an effective way to enhance the absorption of the near IR solar photons towards designing high-performance nonfullerene polymer solar cells.
基金supported by the NationalNatural Science Foundation of China(Grant Nos.6167410l and 61504077)the Open Fund of State Key Laboratory of Luminescent Materials and Devices(South China University of Technology),China.
文摘In this work,a sky-blue luminescent down-shifting(LDS)layer bis[(4,6-difluorophenyl)-pyridinato-N,C^(2')]c(picolinate)iridium(II)(FIrpic)was inserted between tetraphenyl dibenzoperiflanthene(DBP)and Mo0_(3)as UV-screen and sensitizer for smallmolecule DBP/C_(60)based planar heterojunction(PHJ)solar cells.With 8-nm Flrpic theshort circuit current(J_(sc))and power conversion efficiency(PCE)of the device areenhanced by 28%and 15%,respectively,probably originating from the re-absorption ofthe photons emitted from Flrpic.The V_(oc)linearly increases over 1-nm Flrpic,ascribed tothe deeper HOMO level of Flrpic than DBP,while the fill factor continuously declines from 3-to 10-nm Flrpic.The EQE spectra prove that the J_(sc)is mainly contributed by thephotocurrent generated in DBP and C_(60)layers.When the FIrpic thickness is 8 nm,the filmsurface is very uniform with the smallest water contact angle.The impedance spectro-scopy demonstrates that the device resistance gradually increases from 4.1×10^(4)Ω(without Flrpic)to 4.6×10^(4)Ω(with 10-nm Flrpic)with the FIrpic thickness rise,simultaneously the device transits from the insulating state into the conductive statefaster for the thin Flrpic layer than the thick layer.