We have constructed a catalog containing the best available astrometric, photometric, radial velocity and astrophysical data for mainly F-type and G-type stars (called the Astrometric Catalog associated with Astrophy...We have constructed a catalog containing the best available astrometric, photometric, radial velocity and astrophysical data for mainly F-type and G-type stars (called the Astrometric Catalog associated with Astrophysical Data, ACAD). This contains 27 553 records and is used for the purpose of analyzing stellar kinematics in the solar neighborhood. Using the Lindblad-Oort model and compiled ACAD, we calculated the solar motion and Oort constants in different age-metallicity bins. The evolution of kinematical parameters with stellar age and metallicity was investigated directly. The results show that the component of the solar motion in the direction of Galactic rotation (denoted S_2) linearly increases with age, which may be a conse- quence of the scattering processes, and its value for a dynamical cold disk was found to be 8.0 ± 1.2 km s^-1. S_2 also linearly increases with metallicity, which indicates that radial migration is correlated to the metallicity gradient. On the other hand, the rotational velocity of the Sun around the Galactic center has no clear correlation with ages or metallicities of stars used in the estimation.展开更多
We have calculated the orbital parameters for 90 stars in Chen et al. and updated the kinematic data for stars in Edvardsson et al. by using the accurate Hipparcos parallaxes and proper motions, and recalculated the ...We have calculated the orbital parameters for 90 stars in Chen et al. and updated the kinematic data for stars in Edvardsson et al. by using the accurate Hipparcos parallaxes and proper motions, and recalculated the α-element abundances in Edvardsson et al. in a way consistent with Chen et al. The two sets of data are combined in a study of stellar populations and characteristics of F & G stars in the solar neighborhood. We confirm the result of Chen et al. that a distinguishable group of stars may belong to the thick disk rather than the thin disk. The ages for the stars are determined using the theoretical isochrones of VandenBerg et al. The age-metallicity relation is investigated for different subgroups according to distance from the sun and galactic orbital parameters. It is found that a mixing of stars with different orbital parameters significantly affect the age-metallicity relation for the disk. Stars with orbits confined to the solar circle all have metallicities [Fe/H] > -0.3 irrespective of their distances from the sun or from the Galactic plane.展开更多
A spectral analysis of the vertical positions and velocities of 374 open star clusters(OSCs)was carried out.We took these OSCs from the Hunt and Reffert catalog;they have an average age of about 10 million years,and a...A spectral analysis of the vertical positions and velocities of 374 open star clusters(OSCs)was carried out.We took these OSCs from the Hunt and Reffert catalog;they have an average age of about 10 million years,and are located on the galactic plane XY in a narrow zone inclined by 25°to the galactic axis Y.The following estimates of the parameters of the Radcliffe wave were obtained:(a)the maximum value in periodic perturbations of vertical coordinates Z_(max)=92±10pc with the wavelength of these perturbations λ_(z)=4.82±0.09 kpc;(b)the maximum value of the velocity of vertical disturbances Wmax=4.36±0.12km s^(-1) with disturbance wavelengthλ_(W)=1.78±0.02 kpc.Note that the results of the vertical velocity analysis are first-class in accuracy and completely new.展开更多
With the new Hipparcos data recently released, we reexamine the kinematics in the solar neighborhood. Two different populations of objects, namely the thin-disk O-B5 stars and the thick-disk K-M giants, are selected f...With the new Hipparcos data recently released, we reexamine the kinematics in the solar neighborhood. Two different populations of objects, namely the thin-disk O-B5 stars and the thick-disk K-M giants, are selected for tracing the kinematical parameters of the Galaxy. Using a 3-D kinematical model, the components of the solar motion and the Oort constants are derived. The solutions and the kinematics inferred from both types of stars are analyzed. The results obtained with the new data are compared with those from the old Hipparcos data. We conclude that the present solution provides a more reliable estimation of the Oort constants, thanks to the new reduction of the Hipparcos data that provides even more accurate astrometric measurements of stars.展开更多
Based on the Hipparcos proper motions and available radial velocity data of O-B stars, we have re-examined the local kinematical structure of the young disk population of 1500 O-B stars not including the Gould-belt s...Based on the Hipparcos proper motions and available radial velocity data of O-B stars, we have re-examined the local kinematical structure of the young disk population of 1500 O-B stars not including the Gould-belt stars. A systematic warping motion of the stars about the direction to the Galactic center has been reconfirmed. A negative K-term implying a systematic contraction of stars in the solar vicinity has been detected. Two different distance scales are used in order to find out their impact on the kinematical parameters, and we conclude that the adopted distance scale plays an important role in characterizing the kinematical parameters at the present level of the measurement uncertainty.展开更多
The manner the galaxy accretes matter, along with the star formation rates at different epochs, influences the evolution of the stable isotopic inventories of the galaxy. A detailed analysis is presented here to study...The manner the galaxy accretes matter, along with the star formation rates at different epochs, influences the evolution of the stable isotopic inventories of the galaxy. A detailed analysis is presented here to study the dependence of the galactic chemical evolution on the accretion scenario of the galaxy along with the star formation rate during the early accretionary phase of the galactic thick disk and thin disk. Our results indicate that a rapid early accretion of the galaxy during the formation of the galactic thick disk along with an enhanced star formation rate in the early stages of the galaxy accretion could explain the majority of the galactic chemical evolution trends of the major elements. Further, we corroborate the recent suggestions regarding the formation of a massive galactic thick disk rather than the earlier assumed low mass thick disk.展开更多
基金Supported by the National Natural Science Foundation of China
文摘We have constructed a catalog containing the best available astrometric, photometric, radial velocity and astrophysical data for mainly F-type and G-type stars (called the Astrometric Catalog associated with Astrophysical Data, ACAD). This contains 27 553 records and is used for the purpose of analyzing stellar kinematics in the solar neighborhood. Using the Lindblad-Oort model and compiled ACAD, we calculated the solar motion and Oort constants in different age-metallicity bins. The evolution of kinematical parameters with stellar age and metallicity was investigated directly. The results show that the component of the solar motion in the direction of Galactic rotation (denoted S_2) linearly increases with age, which may be a conse- quence of the scattering processes, and its value for a dynamical cold disk was found to be 8.0 ± 1.2 km s^-1. S_2 also linearly increases with metallicity, which indicates that radial migration is correlated to the metallicity gradient. On the other hand, the rotational velocity of the Sun around the Galactic center has no clear correlation with ages or metallicities of stars used in the estimation.
基金NKBRSF G1999075406 the National Natural Science Foundation of China under grant 10173014.
文摘We have calculated the orbital parameters for 90 stars in Chen et al. and updated the kinematic data for stars in Edvardsson et al. by using the accurate Hipparcos parallaxes and proper motions, and recalculated the α-element abundances in Edvardsson et al. in a way consistent with Chen et al. The two sets of data are combined in a study of stellar populations and characteristics of F & G stars in the solar neighborhood. We confirm the result of Chen et al. that a distinguishable group of stars may belong to the thick disk rather than the thin disk. The ages for the stars are determined using the theoretical isochrones of VandenBerg et al. The age-metallicity relation is investigated for different subgroups according to distance from the sun and galactic orbital parameters. It is found that a mixing of stars with different orbital parameters significantly affect the age-metallicity relation for the disk. Stars with orbits confined to the solar circle all have metallicities [Fe/H] > -0.3 irrespective of their distances from the sun or from the Galactic plane.
文摘A spectral analysis of the vertical positions and velocities of 374 open star clusters(OSCs)was carried out.We took these OSCs from the Hunt and Reffert catalog;they have an average age of about 10 million years,and are located on the galactic plane XY in a narrow zone inclined by 25°to the galactic axis Y.The following estimates of the parameters of the Radcliffe wave were obtained:(a)the maximum value in periodic perturbations of vertical coordinates Z_(max)=92±10pc with the wavelength of these perturbations λ_(z)=4.82±0.09 kpc;(b)the maximum value of the velocity of vertical disturbances Wmax=4.36±0.12km s^(-1) with disturbance wavelengthλ_(W)=1.78±0.02 kpc.Note that the results of the vertical velocity analysis are first-class in accuracy and completely new.
基金supported by the National Natural Science Foundation of China (grantNos. 10333050 and 10673005).
文摘With the new Hipparcos data recently released, we reexamine the kinematics in the solar neighborhood. Two different populations of objects, namely the thin-disk O-B5 stars and the thick-disk K-M giants, are selected for tracing the kinematical parameters of the Galaxy. Using a 3-D kinematical model, the components of the solar motion and the Oort constants are derived. The solutions and the kinematics inferred from both types of stars are analyzed. The results obtained with the new data are compared with those from the old Hipparcos data. We conclude that the present solution provides a more reliable estimation of the Oort constants, thanks to the new reduction of the Hipparcos data that provides even more accurate astrometric measurements of stars.
基金Supported by the National Natural Science Foundation of China.
文摘Based on the Hipparcos proper motions and available radial velocity data of O-B stars, we have re-examined the local kinematical structure of the young disk population of 1500 O-B stars not including the Gould-belt stars. A systematic warping motion of the stars about the direction to the Galactic center has been reconfirmed. A negative K-term implying a systematic contraction of stars in the solar vicinity has been detected. Two different distance scales are used in order to find out their impact on the kinematical parameters, and we conclude that the adopted distance scale plays an important role in characterizing the kinematical parameters at the present level of the measurement uncertainty.
文摘The manner the galaxy accretes matter, along with the star formation rates at different epochs, influences the evolution of the stable isotopic inventories of the galaxy. A detailed analysis is presented here to study the dependence of the galactic chemical evolution on the accretion scenario of the galaxy along with the star formation rate during the early accretionary phase of the galactic thick disk and thin disk. Our results indicate that a rapid early accretion of the galaxy during the formation of the galactic thick disk along with an enhanced star formation rate in the early stages of the galaxy accretion could explain the majority of the galactic chemical evolution trends of the major elements. Further, we corroborate the recent suggestions regarding the formation of a massive galactic thick disk rather than the earlier assumed low mass thick disk.