期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids
1
作者 Ritesh Singh Abhishek Gupta +2 位作者 Akshoy Ranjan Paul Bireswar Paul Suvash C.Saha 《Energy Engineering》 EI 2024年第4期835-848,共14页
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC... A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid. 展开更多
关键词 parabolic trough solar collector(PTSC) magnetic nanofluid(MNF) heat transfer convective heat transfer coefficient(HTC) thermal enhancement factor(TEF)
下载PDF
Off-Design Simulation of a CSP Power Plant Integrated with aWaste Heat Recovery System
2
作者 T.E.Boukelia A.Bourouis +1 位作者 M.E.Abdesselem M.S.Mecibah 《Energy Engineering》 EI 2023年第11期2449-2467,共19页
Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high sola... Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant. 展开更多
关键词 Dispatch capacity organic Rankine cycle parabolic trough solar power plant PERFORMANCES waste heat recovery
下载PDF
Design and Testing of a Solar Torrefaction Unit to Produce Charcoal
3
作者 Rajaram Swaminathan Frans Nelongo Pandeni Nandjembo 《Journal of Sustainable Bioenergy Systems》 2016年第3期66-71,共6页
With increasing crude oil prices, fuels like kerosene and cooking gas have become unaffordable for many ordinary people in developing countries. For millions of Africans who need heat energy to cook their food, biomas... With increasing crude oil prices, fuels like kerosene and cooking gas have become unaffordable for many ordinary people in developing countries. For millions of Africans who need heat energy to cook their food, biomass like wood remains the easiest and cheapest source of fuel. Charcoal remains the most popular choice compared to wood since it can cook food much faster with very little smoke. Torrefaction of biomass is a mild form of pyrolysis at temperatures typically between 200℃ and 300℃ to produce charcoal. Torrefaction changes biomass properties to provide a much better fuel quality for combustion applications. A simple parabolic trough solar collector to produce charcoal by torrefaction process using solar energy has been designed from first principles. The device was fabricated and various locally available wood species were tested. The yield was found to be 21% to 35% with a production time of 90 minutes. The paper details the design procedure and the test results. 展开更多
关键词 TORREFACTION Charcoal Production solar parabolic trough Design TESTING
下载PDF
Selective Absorber Coatings and Technological Advancements in Performance Enhancement for Parabolic Trough Solar Collector 被引量:1
4
作者 ASAAD YASSEEN Al-Rabeeah ISTVAN Seres ISTVAN Farkas 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期1990-2008,共19页
Parabolic trough solar collector systems are the most advanced concentrating solar power technology for large-scale power generation purposes. The current work reviews various selective coating materials and their cha... Parabolic trough solar collector systems are the most advanced concentrating solar power technology for large-scale power generation purposes. The current work reviews various selective coating materials and their characteristics for different designs in concentrating solar power. Solar selective absorbing coatings collect solar radiation and convert it to heat. To promote higher efficiency and lower energy costs at higher temperatures requires, this study aims to analyse the fundamental chemistry and thermal stability of some key coatings currently being used and even under investigation to find reasons for differences, information gaps and potential for improvement in results. In recent years, several novel and useful solar absorber coatings have been developed. However, qualification test methods such as corrosion resistance, thermal stability testing and prediction of service life, which have essential technical value for large-scale solar absorbers, are lacking. Coatings are used to enhance the performance of reflectors and absorbers in terms of quality, efficiency, maintenance and cost. Differentiated coatings are required as there are no uniformly perfect materials in various applications, working conditions and material variations. Much more knowledge of the physical and chemical properties and durability of the coatings is required, which will help prevent failures that could not be discovered previously. 展开更多
关键词 parabolic trough solar collector selective coatings absorber receivers optical properties thermal stability
原文传递
Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages
5
作者 Linrui MA Zhifeng WANG +1 位作者 Ershu XU Li XU 《Frontiers in Energy》 SCIE CSCD 2020年第2期283-297,共15页
To better understand the characteristics of a large-scaled parabolic trough solar field(PTSF)under cloud passages,a novel method which combines a closed-loop thermal hydraulic model(CLTHM)and cloud vector(CV)is develo... To better understand the characteristics of a large-scaled parabolic trough solar field(PTSF)under cloud passages,a novel method which combines a closed-loop thermal hydraulic model(CLTHM)and cloud vector(CV)is developed.Besides,the CLTHM is established and validated based on a pilot plant.Moreover,some key parameters which are used to characterize a typical PTSF and CV are presented for further simulation.Furthermore,two sets of results simulated by the CLTHM are compared and discussed.One set deals with cloud passages by the CV,while the other by the traditionally distributed weather stations(DWSs).Because of considering the solar irradiance distribution in a more detailed and realistically way,compared with the distributed weather station(DWS)simulation,all essential parameters,such as the total flowrate,flow distribution,outlet temperature,thermal and exergetic efficiency,and exergetic destruction tend to be more precise and smoother in the CV simulation.For example,for the runner outlet temperature,which is the most crucial parameter for a running PTSF,the maximum relative error reaches−15%in the comparison.In addition,the mechanism of thermal and hydraulic unbalance caused by cloud passages are explained based on the simulation. 展开更多
关键词 parabolic trough solar field(PTSF) thermal hydraulic model cloud passages transients
原文传递
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle
6
作者 Yunis Khan Radhey Shyam Mishra 《Clean Energy》 EI 2021年第3期476-491,共16页
In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cool... In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cooling and power production.Thermal efficiency,exergy efficiency,exergy destruction and the coefficient of performance of the cogeneration system were considered to be performance parameters.A computer program was developed in engineering equation-solver software for analysis.Influences of the PTC design parameters(solar irradiation,solar-beam incidence angle and velocity of the heat-transfer fluid in the absorber tube),turbine inlet pressure,condenser and evaporator temperature on system performance were discussed.Furthermore,the performance of the cogeneration system was also compared with and without PTCs.It was concluded that it was necessary to design the PTCs carefully in order to achieve better cogeneration performance.The highest values of exergy efficiency,thermal efficiency and exergy destruction of the cogeneration system were 92.9%,51.13%and 1437 kW,respectively,at 0.95 kW/m2 of solar irradiation based on working fluid R227ea,but the highest coefficient of performance was found to be 2.278 on the basis of working fluid R134a.It was also obtained from the results that PTCs accounted for 76.32%of the total exergy destruction of the overall system and the cogeneration system performed well without considering solar performance. 展开更多
关键词 parametric analysis solar parabolic trough collector vapour-compression refrigeration cycle supercritical organic Rankine cycle COGENERATION COOLING power generation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部