Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected...Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected PV systems are coincided with gray theory application conditions. A gray theory model has been applied in short-term forecast of grid-connected photovoltaic system. The verification model of the probability of small error will help to check the accuracy of the gray forecast results. The calculated result shows that the ?model accuracy has been greatly enhanced.展开更多
This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,wh...This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,which is inexhaustible clean energy and has great commercial application value.Based on this fact,we plan to design a unique and novel solar shutter in combination with the daily observation and the shape of solar panels.The shutter blades are equipped with an automatic light tracking system,and the angle of the blades can be adjusted in time through photoresistor induction,that is,as much solar energy as possible can be converted into electric energy for load use,and at the same time,comfortable light can be provided for the house.In essence,the system is a small photovoltaic power generation system,which runs all day with high-efficiency based on automatic sun tracking.Among them,the basic operation route includes:solar position detection,computer data processing,photovoltaic and electric volt energy conversion,circuit connection,etc.From the current debugging results,the shutter has the characteristics of humanization,high efficiency,cleanliness and so on.Through this energy-saving system,we hope to maximize the use of solar energy in the premise of low cost,so as to achieve the purpose of energy saving.展开更多
Shaanxi province has three land forms which are Shaanxi’s northern plateau, Guanzhong plain and Qinba mountain land in the south of Shaanxi province. So the climate type is also divided into three types and the solar...Shaanxi province has three land forms which are Shaanxi’s northern plateau, Guanzhong plain and Qinba mountain land in the south of Shaanxi province. So the climate type is also divided into three types and the solar energy resources distribution has a big gap between different regions. PV modules, as the core component of off-grid home photovoltaic power system, their output power are mainly influenced by sun radiation, array tile angle, temperature and so on. Based on the reasons above, in order to apply off-grid home photovoltaic power system in Shaanxi region, this paper designs different systems with different configuration, and makes the performance prediction. The results show that the capacity of PV modules reaches to the largest in Shaanxi northern region, reach minimum in Shaanxi southern region and the output power in the winter is less than in the summer and reach minimum in the spring and autumn. In light of the characteristics above, this research select different type and configuration in different areas systematically, and the performance analysis shows that the configuration can meet the basic life demand of power to the people whose power is not available.展开更多
Because working performance of off-grid home photovoltaic power system is influenced by factors of solar radiation, ambient temperature and installation angle, this research established power supply model, analyzed wo...Because working performance of off-grid home photovoltaic power system is influenced by factors of solar radiation, ambient temperature and installation angle, this research established power supply model, analyzed working performance and optimized system configuration, by referencing weather conditions of Yulin and Yan’an and those factors. Results showed that under given solar radiation and ambient temperature, difference of installation angle can cause 30% to 40% difference of performance. In order to meet power demand, installation angles of Yulin and Yan'an were selected as 40 degree and 30 degree, and annual output power were 1.44 kWh/Wp and 1.32 kWh/Wp. Based on those results, the configuration of Yulin and Yan'an was 150 Wp and 170 Wp, and annual output power was 172.70 kWh and 179.66 kWh. Systems optimized above can meet the mid-scale demand in Shaanxi northern region and build theoretical foundation of application.展开更多
This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter t...This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.展开更多
This document presents the evaluation and the monitoring of the performances of the first grid-connected photovoltaic system installed in the Center of Studies and Researches on the Renewable Energies (CERER) inaugura...This document presents the evaluation and the monitoring of the performances of the first grid-connected photovoltaic system installed in the Center of Studies and Researches on the Renewable Energies (CERER) inaugurated on December 4th, 2012 by the governmental authorities of Senegal and Tenerife. This mini power plant of 3.15 kWc is a perfect example of the political will of the government which is to reduce the production cost of the electricity, with the diversification of the sources of production, and the greater use of the other sources such as the natural gas, the coal, the renewable energies. The evaluation of the performances of the installation is realized by using the indicators of efficiency and performance as the photovoltaic surface yield, the ratio of photovoltaic performance, the photovoltaic specific yield, and the losses of captures. The obtained results show that a big part of the energy shone during the period of observation was not able to be used further to circumstances such as the losses of conductivity, the heat losses or for example the defects on components. The analysis also shows that a large part of the produced energy is not injected because of the dilapidation of the network, the defects of landing but especially one disjunction sees frequently at the level of the point of injection.展开更多
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel...In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.展开更多
This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required rea...This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.展开更多
In the context of promoting green energy transition and addressing climate change globally,solar energy,as a clean and renewable energy source,has gradually become a hot topic for research.Solar streetlight systems re...In the context of promoting green energy transition and addressing climate change globally,solar energy,as a clean and renewable energy source,has gradually become a hot topic for research.Solar streetlight systems realize energy self-sufficiency and environment-friendly lighting by integrating photovoltaic power generation technology and efficient LED lighting technology.By comprehensively analyzing the current status of the application of solar streetlights at home and abroad,this paper discusses its technical advantages,market penetration,and challenges in its development.In terms of technical characteristics,this paper focuses on analyzing the key technologies such as energy conversion efficiency and intelligent control systems of solar streetlights.展开更多
A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current an...A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.展开更多
This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energ...This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.展开更多
Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper an...Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.展开更多
The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) effic...The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) efficiency and its applicable evaluation in practice.Intense work has been done in the last few years to formulate applicable standards for measuring static and dynamic efficiencies worldwide.Besides that,this work is presenting on novel methods of analysis on non-trivial system characteristics impacting the final evaluation on the overall performance of the PV inverter.The elaborated testing procedures for complex system behavior under highly nonlinear conditions (unintentional partial shading, mismatching of DC strings) are explained and characterized.With the help of experimental results, the exclusive impact on the overall efficiency is illustrated and helpful statements are given on the resulting technical characteristics of MPP strategies.展开更多
The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy ...The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy sources,such as sunshine and wind in electricity generation has significantly reduced.This has led to higher penetration of renewable energy into the grid.However,both wind and solar energy photovoltaics are unpredictable energies which reduce the reliability and resiliency of the grid.The integration of battery energy storage system in the grid is one of the proficient solutions to the problem.There are numerous grid connected renewable energy based battery projects that have been deployed in different countries around the world for research,development and commercial application.This review paper will discuss some of the projects based on the battery connected wind and solar energy power generation systems that can operate both in grid connected and grid independent modes.The projects discussed in this paper are selected based on the availability of information.The battery energy storage system(BESS)incorporated in each of the project is found to increase the stability and performance of the grid by addressing the mismatch between power generation and the load of the grid created due to intermittent nature of renewable energy sources.展开更多
Renewable energy has become a solution to the world’s energy concerns in recent years.Photovoltaic(PV)technology is the fastest technique to convert solar radiation into electricity.Solar-powered buses,metros,and car...Renewable energy has become a solution to the world’s energy concerns in recent years.Photovoltaic(PV)technology is the fastest technique to convert solar radiation into electricity.Solar-powered buses,metros,and cars use PV technology.Such technologies are always evolving.Included in the parameters that need to be analysed and examined include PV capabilities,vehicle power requirements,utility patterns,acceleration and deceleration rates,and storage module type and capacity,among others.PVPG is intermit-tent and weather-dependent.Accurate forecasting and modelling of PV sys-tem output power are key to managing storage,delivery,and smart grids.With unparalleled data granularity,a data-driven system could better anticipate solar generation.Deep learning(DL)models have gained popularity due to their capacity to handle complex datasets and increase computing power.This article introduces the Galactic Swarm Optimization with Deep Belief Network(GSODBN-PPGF)model.The GSODBN-PPGF model predicts PV power production.The GSODBN-PPGF model normalises data using data scaling.DBN is used to forecast PV power output.The GSO algorithm boosts the DBN model’s predicted output.GSODBN-PPGF projected 0.002 after 40 h but observed 0.063.The GSODBN-PPGF model validation is compared to existing approaches.Simulations showed that the GSODBN-PPGF model outperformed recent techniques.It shows that the proposed model is better at forecasting than other models and can be used to predict the PV power output for the next day.展开更多
A solar PV panel works with maximum efficiency only when it is operated around its optimum operating point or maximum power point.Unfortunately,the performance of the solar cell is affected by several factors like sun...A solar PV panel works with maximum efficiency only when it is operated around its optimum operating point or maximum power point.Unfortunately,the performance of the solar cell is affected by several factors like sun direction,solar irradiance,dust accumulation,module temperature,as well as the load on the system.Dust deposition is one of the most prominent factors that influence the performance of solar panels.Because the solar panel is exposed to the atmosphere,dust will accumulate on its surface,reducing the quantity of sunlight reaching the solar cell and diminishing output.In the proposed work,a detailed investigation of the performance of solar PV modules is carried out under the tropical climatic condition of Chennai,India,where the presence of dust particles is very high.The data corresponding to four different dust samples of various densities at four solar irradiation levels of 220,525,702,and 905 W/m^(2)are collected,and performance analysis is carried out.Based on the analysis carried out,the maximum power loss is found to be 73.51%,66.29%,65.46%,and 61.42%,for coal,sand,brick powder,and chalk dust respectively.Hence,it can be said that coal dust contributes to the maximum power loss among all four dust samples.Due to heat dissipation produced by dust deposition,the performance of solar PV modules is degraded as the temperature rose.展开更多
The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation ...The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation conditions. In this paper, a comparative analysis of six types of performance indicators is conducted and a new performance indicator which considers PV panel slope and orientation is proposed. The proposed indicator is benchmarking the PV system actual output against the maximum output of the same system if it would operate in two axis tracking mode. The proposed performance indicator is used to develop a friendly user calculator of PV system output that can be used by, energy providers and PV system installers to evaluate the output of the PV grid connect network. The advantage of the developed calculator is high-lighted by a case study that estimates energy capacity of different residential rooftop PV systems installed in a residential suburb in Sydney.展开更多
This paper primarily discusses the main circuit of single-phase inverter circuits.It begins by introducing the research context and the significance of the subject,then discusses the topology of grid-connected single-...This paper primarily discusses the main circuit of single-phase inverter circuits.It begins by introducing the research context and the significance of the subject,then discusses the topology of grid-connected single-phase inverter circuits,continues by discussing the control strategy for grid-connected single-phase inverter circuits,realizes a sinusoidal pulse width modulation(SPWM)signal generation circuit and an inverse control algorithm program,and finally ensures good output waveform and fast dynamic response.In view of the hysteresis feature of the grid voltage’s synchronous signal sampling circuit,the acquisition function in digital signal processing(DSP)control chips is applied,and the reasons for the hysteresis phenomenon are thoroughly investigated.The reliability of the SPWM control algorithm is revealed through the results.展开更多
针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压...针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.展开更多
文摘Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected PV systems are coincided with gray theory application conditions. A gray theory model has been applied in short-term forecast of grid-connected photovoltaic system. The verification model of the probability of small error will help to check the accuracy of the gray forecast results. The calculated result shows that the ?model accuracy has been greatly enhanced.
文摘This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,which is inexhaustible clean energy and has great commercial application value.Based on this fact,we plan to design a unique and novel solar shutter in combination with the daily observation and the shape of solar panels.The shutter blades are equipped with an automatic light tracking system,and the angle of the blades can be adjusted in time through photoresistor induction,that is,as much solar energy as possible can be converted into electric energy for load use,and at the same time,comfortable light can be provided for the house.In essence,the system is a small photovoltaic power generation system,which runs all day with high-efficiency based on automatic sun tracking.Among them,the basic operation route includes:solar position detection,computer data processing,photovoltaic and electric volt energy conversion,circuit connection,etc.From the current debugging results,the shutter has the characteristics of humanization,high efficiency,cleanliness and so on.Through this energy-saving system,we hope to maximize the use of solar energy in the premise of low cost,so as to achieve the purpose of energy saving.
文摘Shaanxi province has three land forms which are Shaanxi’s northern plateau, Guanzhong plain and Qinba mountain land in the south of Shaanxi province. So the climate type is also divided into three types and the solar energy resources distribution has a big gap between different regions. PV modules, as the core component of off-grid home photovoltaic power system, their output power are mainly influenced by sun radiation, array tile angle, temperature and so on. Based on the reasons above, in order to apply off-grid home photovoltaic power system in Shaanxi region, this paper designs different systems with different configuration, and makes the performance prediction. The results show that the capacity of PV modules reaches to the largest in Shaanxi northern region, reach minimum in Shaanxi southern region and the output power in the winter is less than in the summer and reach minimum in the spring and autumn. In light of the characteristics above, this research select different type and configuration in different areas systematically, and the performance analysis shows that the configuration can meet the basic life demand of power to the people whose power is not available.
文摘Because working performance of off-grid home photovoltaic power system is influenced by factors of solar radiation, ambient temperature and installation angle, this research established power supply model, analyzed working performance and optimized system configuration, by referencing weather conditions of Yulin and Yan’an and those factors. Results showed that under given solar radiation and ambient temperature, difference of installation angle can cause 30% to 40% difference of performance. In order to meet power demand, installation angles of Yulin and Yan'an were selected as 40 degree and 30 degree, and annual output power were 1.44 kWh/Wp and 1.32 kWh/Wp. Based on those results, the configuration of Yulin and Yan'an was 150 Wp and 170 Wp, and annual output power was 172.70 kWh and 179.66 kWh. Systems optimized above can meet the mid-scale demand in Shaanxi northern region and build theoretical foundation of application.
文摘This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.
文摘This document presents the evaluation and the monitoring of the performances of the first grid-connected photovoltaic system installed in the Center of Studies and Researches on the Renewable Energies (CERER) inaugurated on December 4th, 2012 by the governmental authorities of Senegal and Tenerife. This mini power plant of 3.15 kWc is a perfect example of the political will of the government which is to reduce the production cost of the electricity, with the diversification of the sources of production, and the greater use of the other sources such as the natural gas, the coal, the renewable energies. The evaluation of the performances of the installation is realized by using the indicators of efficiency and performance as the photovoltaic surface yield, the ratio of photovoltaic performance, the photovoltaic specific yield, and the losses of captures. The obtained results show that a big part of the energy shone during the period of observation was not able to be used further to circumstances such as the losses of conductivity, the heat losses or for example the defects on components. The analysis also shows that a large part of the produced energy is not injected because of the dilapidation of the network, the defects of landing but especially one disjunction sees frequently at the level of the point of injection.
基金This work was supported by National Key Research and Development Program of China(2018YFB0904000).
文摘In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.
文摘This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.
文摘In the context of promoting green energy transition and addressing climate change globally,solar energy,as a clean and renewable energy source,has gradually become a hot topic for research.Solar streetlight systems realize energy self-sufficiency and environment-friendly lighting by integrating photovoltaic power generation technology and efficient LED lighting technology.By comprehensively analyzing the current status of the application of solar streetlights at home and abroad,this paper discusses its technical advantages,market penetration,and challenges in its development.In terms of technical characteristics,this paper focuses on analyzing the key technologies such as energy conversion efficiency and intelligent control systems of solar streetlights.
文摘A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland.
文摘This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.
文摘Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.
文摘The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) efficiency and its applicable evaluation in practice.Intense work has been done in the last few years to formulate applicable standards for measuring static and dynamic efficiencies worldwide.Besides that,this work is presenting on novel methods of analysis on non-trivial system characteristics impacting the final evaluation on the overall performance of the PV inverter.The elaborated testing procedures for complex system behavior under highly nonlinear conditions (unintentional partial shading, mismatching of DC strings) are explained and characterized.With the help of experimental results, the exclusive impact on the overall efficiency is illustrated and helpful statements are given on the resulting technical characteristics of MPP strategies.
文摘The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy sources,such as sunshine and wind in electricity generation has significantly reduced.This has led to higher penetration of renewable energy into the grid.However,both wind and solar energy photovoltaics are unpredictable energies which reduce the reliability and resiliency of the grid.The integration of battery energy storage system in the grid is one of the proficient solutions to the problem.There are numerous grid connected renewable energy based battery projects that have been deployed in different countries around the world for research,development and commercial application.This review paper will discuss some of the projects based on the battery connected wind and solar energy power generation systems that can operate both in grid connected and grid independent modes.The projects discussed in this paper are selected based on the availability of information.The battery energy storage system(BESS)incorporated in each of the project is found to increase the stability and performance of the grid by addressing the mismatch between power generation and the load of the grid created due to intermittent nature of renewable energy sources.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding after publication,Grand No.PRFA-P-42-16.
文摘Renewable energy has become a solution to the world’s energy concerns in recent years.Photovoltaic(PV)technology is the fastest technique to convert solar radiation into electricity.Solar-powered buses,metros,and cars use PV technology.Such technologies are always evolving.Included in the parameters that need to be analysed and examined include PV capabilities,vehicle power requirements,utility patterns,acceleration and deceleration rates,and storage module type and capacity,among others.PVPG is intermit-tent and weather-dependent.Accurate forecasting and modelling of PV sys-tem output power are key to managing storage,delivery,and smart grids.With unparalleled data granularity,a data-driven system could better anticipate solar generation.Deep learning(DL)models have gained popularity due to their capacity to handle complex datasets and increase computing power.This article introduces the Galactic Swarm Optimization with Deep Belief Network(GSODBN-PPGF)model.The GSODBN-PPGF model predicts PV power production.The GSODBN-PPGF model normalises data using data scaling.DBN is used to forecast PV power output.The GSO algorithm boosts the DBN model’s predicted output.GSODBN-PPGF projected 0.002 after 40 h but observed 0.063.The GSODBN-PPGF model validation is compared to existing approaches.Simulations showed that the GSODBN-PPGF model outperformed recent techniques.It shows that the proposed model is better at forecasting than other models and can be used to predict the PV power output for the next day.
文摘A solar PV panel works with maximum efficiency only when it is operated around its optimum operating point or maximum power point.Unfortunately,the performance of the solar cell is affected by several factors like sun direction,solar irradiance,dust accumulation,module temperature,as well as the load on the system.Dust deposition is one of the most prominent factors that influence the performance of solar panels.Because the solar panel is exposed to the atmosphere,dust will accumulate on its surface,reducing the quantity of sunlight reaching the solar cell and diminishing output.In the proposed work,a detailed investigation of the performance of solar PV modules is carried out under the tropical climatic condition of Chennai,India,where the presence of dust particles is very high.The data corresponding to four different dust samples of various densities at four solar irradiation levels of 220,525,702,and 905 W/m^(2)are collected,and performance analysis is carried out.Based on the analysis carried out,the maximum power loss is found to be 73.51%,66.29%,65.46%,and 61.42%,for coal,sand,brick powder,and chalk dust respectively.Hence,it can be said that coal dust contributes to the maximum power loss among all four dust samples.Due to heat dissipation produced by dust deposition,the performance of solar PV modules is degraded as the temperature rose.
文摘The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation conditions. In this paper, a comparative analysis of six types of performance indicators is conducted and a new performance indicator which considers PV panel slope and orientation is proposed. The proposed indicator is benchmarking the PV system actual output against the maximum output of the same system if it would operate in two axis tracking mode. The proposed performance indicator is used to develop a friendly user calculator of PV system output that can be used by, energy providers and PV system installers to evaluate the output of the PV grid connect network. The advantage of the developed calculator is high-lighted by a case study that estimates energy capacity of different residential rooftop PV systems installed in a residential suburb in Sydney.
文摘This paper primarily discusses the main circuit of single-phase inverter circuits.It begins by introducing the research context and the significance of the subject,then discusses the topology of grid-connected single-phase inverter circuits,continues by discussing the control strategy for grid-connected single-phase inverter circuits,realizes a sinusoidal pulse width modulation(SPWM)signal generation circuit and an inverse control algorithm program,and finally ensures good output waveform and fast dynamic response.In view of the hysteresis feature of the grid voltage’s synchronous signal sampling circuit,the acquisition function in digital signal processing(DSP)control chips is applied,and the reasons for the hysteresis phenomenon are thoroughly investigated.The reliability of the SPWM control algorithm is revealed through the results.
文摘针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.