期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dynamic modeling and simulation of deploying process for space solar power satellite receiver 被引量:2
1
作者 Tingting YIN Zichen DENG +1 位作者 Weipeng HU Xindong WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第2期261-274,共14页
To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the si... To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the simplified model with the consideration of the Rayleigh damping effect. The system containing the Rayleigh damping can be separated and transformed into the equivalent nondamping system formally to insure the application condition of the symplectic Runge-Kutta method. First, the Lagrange equation with the Rayleigh damping governing the motion of the system is derived via the variational principle. Then, with some reasonable assumptions on the relations among the damping, mass, and stiffness matrices, the Rayleigh damping system is equivalently converted into the nondamping system formally, so that the symplectic Runge-Kutta method can be used to simulate the deploying process for the solar receiver. Finally, some numerical results of the symplectic Runge-Kutta method for the dynamic properties of the solar receiver are reported. The numerical results show that the proposed simplified model is valid for the deploying process for the SPS-ALPHA solar receiver, and the symplectic Runge-Kutta method can preserve the displacement constraints of the system well with excellent long-time numerical stability. 展开更多
关键词 solar power satellite rayleigh damping separate and transform symplecticrunge-kutta method structure preserving
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部