Solar energy will be a great alternative to fossil fuels since it is clean and renewable.The photovoltaic(PV)mechanism produces sunbeams’green energy without noise or pollution.The PV mechanism seems simple,seldom ma...Solar energy will be a great alternative to fossil fuels since it is clean and renewable.The photovoltaic(PV)mechanism produces sunbeams’green energy without noise or pollution.The PV mechanism seems simple,seldom malfunctioning,and easy to install.PV energy productivity significantly contributes to smart grids through many small PV mechanisms.Precise solar radiation(SR)prediction could substantially reduce the impact and cost relating to the advancement of solar energy.In recent times,several SR predictive mechanism was formulated,namely artificial neural network(ANN),autoregressive moving average,and support vector machine(SVM).Therefore,this article develops an optimal Modified Bidirectional Gated Recurrent Unit Driven Solar Radiation Prediction(OMBGRU-SRP)for energy management.The presented OMBGRU-SRP technique mainly aims to accomplish an accurate and time SR prediction process.To accomplish this,the presented OMBGRU-SRP technique performs data preprocessing to normalize the solar data.Next,the MBGRU model is derived using BGRU with an attention mechanism and skip connections.At last,the hyperparameter tuning of the MBGRU model is carried out using the satin bowerbird optimization(SBO)algorithm to attain maximum prediction with minimum error values.The SBO algorithm is an intelligent optimization algorithm that simulates the breeding behavior of an adult male Satin Bowerbird in the wild.Many experiments were conducted to demonstrate the enhanced SR prediction performance.The experimental values highlighted the supremacy of the OMBGRU-SRP algorithm over other existing models.展开更多
Geoengineering(deliberate climate modification)is a possible way to limit Anthropogenic Global Warming(AGW)(Shepherd,2009;National Research Council,2015).Solar Radiation Management geoengineering(SRM)offers relatively...Geoengineering(deliberate climate modification)is a possible way to limit Anthropogenic Global Warming(AGW)(Shepherd,2009;National Research Council,2015).Solar Radiation Management geoengineering(SRM)offers relatively inexpensive,rapid temperature control.However,this low cost leads to a risk of controversial unilateral intervention—the“free-driver”problem(Weitzman,2015).Consequently,this creates a risk of counter-geoengineering(deliberate warming)(Parker et al.,2018),resulting in governance challenges(Svoboda,2017)akin to an arms race.Free-driver deployment scenarios previously considered include the rogue state,Greenfinger(Bodansky,2013),or power blocs(Ricke et al.,2013),implying disagreement and conflict.We propose a novel distributed governance model of consensually-constrained unilateralism:Countries’authority is limited to each state’s fraction of the maximum realistic intervention(e.g.,pre-industrial temperature).We suggest a division of authority based on historical emissions(Rocha et al.,2015)—noting alternatives(e.g.,population).To aid understanding,we offer an analogue:An over-heated train carriage,with passenger-controlled windows.We subsequently discuss the likely complexities,notably Coasian side-payments.Finally,we suggest further research:Algebraic,bot and human modeling;and observational studies.展开更多
Solar Radiation Management (SRM) geoengineering is a proposed response to anthropogenic global warming (AGW)(National Academy of Sciences, 2015). There may be profound - even violent - disagreement on preferred temper...Solar Radiation Management (SRM) geoengineering is a proposed response to anthropogenic global warming (AGW)(National Academy of Sciences, 2015). There may be profound - even violent - disagreement on preferred temperature. SRM disruption risks dangerous temperature rise (termination shock). Concentrating on aircraft-delivered Stratospheric Aerosol Injection (SAI), we appraise threats to SRM and defense methodologies. Civil protest and minor cyberattacks are almost inevitable but are manageable (unless state-sponsored). Overt military attacks are more disruptive, but unlikely - although superpowers' symbolic overt attacks may deter SRM. Unattributable attacks are likely, and mandate use of widely-available weapons. Risks from unsophisticated weapons are therefore higher. An extended supply chain is more vulnerable than a secure airbase - necessitating supply-chain hardening. Recommendations to improve SRM resilience include heterogeneous operations from diverse, secure, well-stocked bases (possibly ocean islands or aircraft carriers);and avoidance of single-point-of failure risks (e.g. balloons). A distributed, civilianoperated system offers an alternative strategy. A multilateral, consensual SRM approach reduces likely attack triggers.展开更多
Geoengineering is a proposed response to anthropogenic global warming (AGW). Conventionally it consists of two strands: Solar Radiation Management (SRM), which is fast-acting, incomplete but inexpensive, and Carbon Di...Geoengineering is a proposed response to anthropogenic global warming (AGW). Conventionally it consists of two strands: Solar Radiation Management (SRM), which is fast-acting, incomplete but inexpensive, and Carbon Dioxide Removal (CDR), which is slower acting, more expensive, and comprehensive. Pairing SRM and CDR offers a contractually complete solution for future emissions if effectively-scaled and coordinated. SRM offsets warming, while CDR takes effect. We suggest coordination using a blockchain, i.e. smart contracts and a distributed ledger. Specifically, we integrate CDR futures with time and volume-matched SRM orders, to address emissions contractually before release. This provides an economically and environmentally proportionate solution to CO2 emissions at the wellhead, with robust contractual transparency, and minimal overhead cost. Our proposal offers a 'polluter pays' implementation of Long & Shepherds SRM 'bridge' concept. This 'polluter geoengineers' approach mandates and verifies emissionslinked payments with minimal friction, delay, or cost. Finally, we compare alternative market designs against this proposal, finding that this proposal offers several advantages. We conclude that blockchain implementation of the 'polluter geoengineers' approach is attractive and feasible for larger wellhead contracts. We also identify a handful of advantages and disadvantages that merit further study.展开更多
The Earth’s land resources are finite, whereas the number of people that the land must support increases rapidly, this situation has been a great concern in the area of agriculture. Crop production must be increased ...The Earth’s land resources are finite, whereas the number of people that the land must support increases rapidly, this situation has been a great concern in the area of agriculture. Crop production must be increased to meet the rapidly growing food demands through sophisticated agricultural processes, while it is important to protect other natural resources and the environment. New agricultural research is needed to provide additional information to farmers, policy makers and other decision makers on how to accomplish sustainable agriculture over the wide variations in climate change around the world. Therefore many researchers have over the years shown interest in finding ways to estimate the yield of crops before harvest. This paper reviews some of the crop growth models that have been successfully developed and used over time. The applications of crop growth models in agricultural meteorology, the role that climate changes play in these models and few of the successfully used crop models in agro-meteorology are also discussed in detail.展开更多
文摘Solar energy will be a great alternative to fossil fuels since it is clean and renewable.The photovoltaic(PV)mechanism produces sunbeams’green energy without noise or pollution.The PV mechanism seems simple,seldom malfunctioning,and easy to install.PV energy productivity significantly contributes to smart grids through many small PV mechanisms.Precise solar radiation(SR)prediction could substantially reduce the impact and cost relating to the advancement of solar energy.In recent times,several SR predictive mechanism was formulated,namely artificial neural network(ANN),autoregressive moving average,and support vector machine(SVM).Therefore,this article develops an optimal Modified Bidirectional Gated Recurrent Unit Driven Solar Radiation Prediction(OMBGRU-SRP)for energy management.The presented OMBGRU-SRP technique mainly aims to accomplish an accurate and time SR prediction process.To accomplish this,the presented OMBGRU-SRP technique performs data preprocessing to normalize the solar data.Next,the MBGRU model is derived using BGRU with an attention mechanism and skip connections.At last,the hyperparameter tuning of the MBGRU model is carried out using the satin bowerbird optimization(SBO)algorithm to attain maximum prediction with minimum error values.The SBO algorithm is an intelligent optimization algorithm that simulates the breeding behavior of an adult male Satin Bowerbird in the wild.Many experiments were conducted to demonstrate the enhanced SR prediction performance.The experimental values highlighted the supremacy of the OMBGRU-SRP algorithm over other existing models.
文摘Geoengineering(deliberate climate modification)is a possible way to limit Anthropogenic Global Warming(AGW)(Shepherd,2009;National Research Council,2015).Solar Radiation Management geoengineering(SRM)offers relatively inexpensive,rapid temperature control.However,this low cost leads to a risk of controversial unilateral intervention—the“free-driver”problem(Weitzman,2015).Consequently,this creates a risk of counter-geoengineering(deliberate warming)(Parker et al.,2018),resulting in governance challenges(Svoboda,2017)akin to an arms race.Free-driver deployment scenarios previously considered include the rogue state,Greenfinger(Bodansky,2013),or power blocs(Ricke et al.,2013),implying disagreement and conflict.We propose a novel distributed governance model of consensually-constrained unilateralism:Countries’authority is limited to each state’s fraction of the maximum realistic intervention(e.g.,pre-industrial temperature).We suggest a division of authority based on historical emissions(Rocha et al.,2015)—noting alternatives(e.g.,population).To aid understanding,we offer an analogue:An over-heated train carriage,with passenger-controlled windows.We subsequently discuss the likely complexities,notably Coasian side-payments.Finally,we suggest further research:Algebraic,bot and human modeling;and observational studies.
文摘Solar Radiation Management (SRM) geoengineering is a proposed response to anthropogenic global warming (AGW)(National Academy of Sciences, 2015). There may be profound - even violent - disagreement on preferred temperature. SRM disruption risks dangerous temperature rise (termination shock). Concentrating on aircraft-delivered Stratospheric Aerosol Injection (SAI), we appraise threats to SRM and defense methodologies. Civil protest and minor cyberattacks are almost inevitable but are manageable (unless state-sponsored). Overt military attacks are more disruptive, but unlikely - although superpowers' symbolic overt attacks may deter SRM. Unattributable attacks are likely, and mandate use of widely-available weapons. Risks from unsophisticated weapons are therefore higher. An extended supply chain is more vulnerable than a secure airbase - necessitating supply-chain hardening. Recommendations to improve SRM resilience include heterogeneous operations from diverse, secure, well-stocked bases (possibly ocean islands or aircraft carriers);and avoidance of single-point-of failure risks (e.g. balloons). A distributed, civilianoperated system offers an alternative strategy. A multilateral, consensual SRM approach reduces likely attack triggers.
文摘Geoengineering is a proposed response to anthropogenic global warming (AGW). Conventionally it consists of two strands: Solar Radiation Management (SRM), which is fast-acting, incomplete but inexpensive, and Carbon Dioxide Removal (CDR), which is slower acting, more expensive, and comprehensive. Pairing SRM and CDR offers a contractually complete solution for future emissions if effectively-scaled and coordinated. SRM offsets warming, while CDR takes effect. We suggest coordination using a blockchain, i.e. smart contracts and a distributed ledger. Specifically, we integrate CDR futures with time and volume-matched SRM orders, to address emissions contractually before release. This provides an economically and environmentally proportionate solution to CO2 emissions at the wellhead, with robust contractual transparency, and minimal overhead cost. Our proposal offers a 'polluter pays' implementation of Long & Shepherds SRM 'bridge' concept. This 'polluter geoengineers' approach mandates and verifies emissionslinked payments with minimal friction, delay, or cost. Finally, we compare alternative market designs against this proposal, finding that this proposal offers several advantages. We conclude that blockchain implementation of the 'polluter geoengineers' approach is attractive and feasible for larger wellhead contracts. We also identify a handful of advantages and disadvantages that merit further study.
文摘The Earth’s land resources are finite, whereas the number of people that the land must support increases rapidly, this situation has been a great concern in the area of agriculture. Crop production must be increased to meet the rapidly growing food demands through sophisticated agricultural processes, while it is important to protect other natural resources and the environment. New agricultural research is needed to provide additional information to farmers, policy makers and other decision makers on how to accomplish sustainable agriculture over the wide variations in climate change around the world. Therefore many researchers have over the years shown interest in finding ways to estimate the yield of crops before harvest. This paper reviews some of the crop growth models that have been successfully developed and used over time. The applications of crop growth models in agricultural meteorology, the role that climate changes play in these models and few of the successfully used crop models in agro-meteorology are also discussed in detail.