Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a...Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.展开更多
Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosti...Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosting(XGBoost),Support Vector Machine(SVM)and Multivariate Adaptive Regression Splines(MARS),to estimate the daily diffuse solar radiation(Rd).The regular meteorological data of 1966-2015 at five stations in China were taken as the input parameters(including mean average temperature(Ta),theoretical sunshine duration(N),actual sunshine duration(n),daily average air relative humidity(RH),and extra-terrestrial solar radiation(Ra)).And their estimation accuracies were subjected to comparative analysis.The three models were first trained using meteorological data from 1966 to 2000.Then,the 2001-2015 data was used to test the trained machine learning model.The results show that the XGBoost had better accuracy than the other two models in coefficient of determination(R2),root mean square error(RMSE),mean bias error(MBE)and normalized root mean square error(NRMSE).The MARS performed better in the training phase than the testing phase,but became less accurate in the testing phase,with the R2 value falling by 2.7-16.9%on average.By contrast,the R2 values of SVM and XGBoost increased by 2.9-12.2%and 1.9-14.3%,respectively.Despite trailing slightly behind the SVM at the Beijing station,the XGBoost showed good performance at the rest of the stations in the two phases.In the training phase,the accuracy growth is small but observable.In addition,the XGBoost had a slightly lower RMSE than the SVM,a signal of its edge in stability.Therefore,the three machine learning models can estimate the daily Rd based on local inputs and the XGBoost stands out for its excellent performance and stability.展开更多
In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on b...In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on building structures or large photovoltaic power plants located in that geographical area. Indeed, the area of southern Italy and in particular Sicily and Calabria are the top of European locations for acquiring solar energy. Some models of diffuse solar irradiance were taken into account to determine panels inclinations that maximized the impinging solar radiation by means of global horizontal solar radiation data provided from the Italian Institute of ENEA (Italy). An algorithm was used for the simulation providing a set of tilt angles for each latitude. The optimum tilt angle values obtained from the simulation resulted to be strictly related to the model of diffuse solar radiation that was used. Indeed, the disagreement between the values obtained using anisotropic models of diffuse solar radiation and those obtained from the isotropic model resulted to decrease significantly with increasing solar declination, showing that the isotropic model can be reliable only in summer months.展开更多
In this paper new diffuse solar radiation equations were established for Antalya,Turkey.For this purpose current equations from the literature which were functions of the clearness index and/or the sunshine fraction w...In this paper new diffuse solar radiation equations were established for Antalya,Turkey.For this purpose current equations from the literature which were functions of the clearness index and/or the sunshine fraction were examined.Nine(9)equations were selected to determine the regression constants of the new equations.In conclusion the best equation among the new equations was introduced on the basis of different statistical indicators.展开更多
The two-stream approximation is applied to solve the multiple scattered radiation transfer equations for an inhomogeneous aerosol atmosphere.The accurate absorption of water vapor,ozone,carbon dioxide and molecular ox...The two-stream approximation is applied to solve the multiple scattered radiation transfer equations for an inhomogeneous aerosol atmosphere.The accurate absorption of water vapor,ozone,carbon dioxide and molecular oxygen is calculated.Calculations have been carried out band by band for the beating rate of atmosphere.The results show that the effect of aerosols on solar heating of the atmosphere is significant.展开更多
The hourly solar radiation data required for solar energy system design evaluation and performance studies is gener-ally not available for a number of sites especially in remote locations. As such accurate determinati...The hourly solar radiation data required for solar energy system design evaluation and performance studies is gener-ally not available for a number of sites especially in remote locations. As such accurate determination of hourly solar radiation data, is important both at horizontal;surfaces and inclined surfaces. A model to estimate global solar radiation using temperature and sunshine hour data has been developed (Chandel et al. [1]) which is used to calculate the hourly solar radiation Data. The hourly solar radiation has also been calculated using Gueymard [2] daily integration approach from the measured daily solar radiation data. These two predicted hourly solar radiation data values are compared with measured hourly values to test the accuracy of the models. The total solar radiation on the inclined surfaces and vertical surfaces for different orientations, have also been estimated. The estimated values are found to be in close agreement with measured values. The method presented can be used to estimate hourly, global, diffuse solar radiation for horizontal surfaces and total solar radiation on inclined and vertical surfaces at different orientations with greater accuracy for any location.展开更多
Knowledge about thermal radiation of the atmosphere is rich in hypotheses and theories but poor in empiric evidence. Thereby, the Stefan-Boltzmann relation is of central importance in atmosphere physics, and holds the...Knowledge about thermal radiation of the atmosphere is rich in hypotheses and theories but poor in empiric evidence. Thereby, the Stefan-Boltzmann relation is of central importance in atmosphere physics, and holds the status of a natural law. However, its empirical foundation is little, tracing back to experiments made by Dulong and Petit two hundred years ago. Originated by Stefan at the end of the 19th century, and theoretically founded afterwards by Boltzmann, it delivers the absolute temperature of a blackbody—or rather of a solid opaque body (SOB)—as a result of the incident solar radiation intensity, the emitted thermal radiation of this body, and the counter-radiation of the atmosphere. Thereby, a similar character of the blackbody radiation—describable by the expression σ·T4—and the atmospheric counter-radiation was assumed. But this appears quite abstruse and must be questioned, not least since no pressure-dependency is provided. Thanks to the author’s recently published work—proposing novel measuring methods—, the possibility was opened-up not only to find an alternative approach for the counter-radiation of the atmosphere, but also to verify it by measurements. This approach was ensued from the observation that the IR-radiative emission of gases is proportional to the pressure and to the square root of the absolute temperature, which could be bolstered by applying the kinetic gas theory. The here presented verification of the modified counter-radiation term A·p·T0.5 in the Stefan-Boltzmann relation was feasible using a direct caloric method for determining the solar absorption coefficients of coloured aluminium-plates and the respective limiting temperatures under direct solar irradiation. For studying the pressure dependency, the experiments were carried out at locations with different altitudes. For the so-called atmospheric emission constant A an approximate value of 22 Wm-2 bar-1 K-0.5 was found. In the non-steady-state, the total thermal emission power of the soil is given by the difference between its blackbody radiation and the counter-radiation of the atmosphere. This relation explains to a considerable part the fact that on mountains the atmospheric temperature is lower than on lowlands, in spite of the enhanced sunlight intensity. Thereto, the so-called greenhouse gases such as carbon-dioxide do not have any influence.展开更多
Bsaed on two-stream approximation, the upward and downward diffuse solar radiation flux densities, M_i^+ and M_i^-, in a plane-parallel atmosphere can be expressed
The transparent envelope structure has huge energy-saving potential, which is the key point to reduce building energy consumption and improve the thermal building environment. The solar radiation transmitted through t...The transparent envelope structure has huge energy-saving potential, which is the key point to reduce building energy consumption and improve the thermal building environment. The solar radiation transmitted through the transparent envelope structure(transmitted solar radiation) is reflected, scattered and absorbed by the indoor surface, which has a significant impact on the heat gain of the building. In this paper, firstly, the diffuse radiation received by different depths of various indoor surfaces is measured by experimental tests, and the distribution function of transmitted diffuse solar radiation(TDSR) on the indoor surface is established. Secondly, the diffuse solar radiation received by the indoor and outdoor surfaces in different seasons is continuously monitored;the variation of TDSR with time is analyzed, and the distribution function of TDSR on indoor surface with time is proposed. Finally, based on the temporal and spatial distribution characteristics of diffuse radiation under different weather conditions, the variation of TDSR with the weather is studied, and the distribution function of TDSR on the indoor surface with weather changes is established. The distribution function of the TDSR on the indoor surface under different depths, time and weather conditions obtained in this study can supplement and improve the theory of building heat gain and load, and help accurate simulation of building energy consumption.展开更多
The present study evaluates ground-based downward surface shortwave radiation (Rs) over the coastal region of Alicante (Southeastern Spain).Hourly measurements collected over the eleven-year period 2010-2020 are used....The present study evaluates ground-based downward surface shortwave radiation (Rs) over the coastal region of Alicante (Southeastern Spain).Hourly measurements collected over the eleven-year period 2010-2020 are used.Two weather stations located over the region capital,Alicante,have been selected as representative of urban and suburban typologies.Two additional weather stations far from the city have been selected representing rural typologies.Rs is significantly reduced over the urban station during the morning hours within the winter season compared to the observations recorded over the suburban and rural stations,with a global mean difference of-81 and-120 W/m^(2)at 10 LT,respectively.However,no significant differences are obtained during the midday sun,with a global mean difference of-20 W/m^(2)between the urban and rural stations.With the aim of explaining these differences,the current paper investigates the relationship between Rsand different air pollutants:NOx,SO_(2),and fine particulate matter (PM_(2.5)and PM_(10)) as well as the wind field measured at the urban and suburban stations.The results found in this work point towards a close relationship between Rsand NOxconcentrations annual cycles,which are also influenced by the prevailing wind circulations observed over the study area.A global mean NOxconcentration of 107μg/m^(3)is observed over the urban station at 10 LT during the winter season.In contrast,these high concentrations are significantly reduced over the suburban station,with global mean value of 40μg/m^(3)at 10 LT,for this period of the year.展开更多
We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-depende...We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.展开更多
The main objective of this paper is to predict the diffuse solar energy on a horizontal surface by using data of global solar energy (H) and diffuse solar energy (H<sub>d</sub>) at different selected geogr...The main objective of this paper is to predict the diffuse solar energy on a horizontal surface by using data of global solar energy (H) and diffuse solar energy (H<sub>d</sub>) at different selected geographical locations in Saudi Arabia during the period time from 1980 to 2019. The low values of the root mean square error RMSE for all correlations indicated a good agreement between the measured and calculated values of H<sub>d</sub>. The negative values of mean percentage error MPE % for all models show that for all locations, the proposed correlations slightly overestimate H<sub>d</sub>, and the absolute values of MPE never reach 1.35%. The first, second and third order correlations between the diffuse solar fraction H<sub>d</sub>/H and the clearness index K<sub>t</sub> and between the diffuse transmittance H<sub>d</sub>/H<sub>0</sub> and the sunshine hours have been proposed for the selected locations using the method of regression analysis. The differences between the measured and calculated values of H<sub>d</sub> show that a first order correlation between H<sub>d</sub>/H and K<sub>t</sub> can be used for estimating H<sub>d</sub> at the present locations with good accuracy. However, second order correlations between Hd/H or H<sub>d</sub>/H<sub>0</sub> and S/S<sub>o</sub> are recommended for estimating H<sub>d</sub> at these locations. The average annual differences between measured and calculated values of diffuse solar energy H<sub>d</sub> on horizontal at selected sites in the present research are discussed.展开更多
For the measurement of atmospheric NO2 vertical column density (VCD), Kitt Peak Solar Flux Atlas can be substituted as an extraterrestrial solar radiation. Compared with differential analysis method, the Taylor expans...For the measurement of atmospheric NO2 vertical column density (VCD), Kitt Peak Solar Flux Atlas can be substituted as an extraterrestrial solar radiation. Compared with differential analysis method, the Taylor expansion of integrated transfer equation underestimates the VCD. This underestimation is as large as 35% when the amount of NO2 is 1 × 1017 cm?2 and observation is conducted with an air mass factor of 10. Even when the VCD is 2 × 1016 cm?2 and the air mass factor is 4, the relative error of the retrieved VCD is still no less than 3%. If the observation is restricted under the small air mass factor condition (≤ 4), with Kitt Peak Solar spectrum as an extraterrestrial solar radiation, only an atmospheric layer of 2 km thick from ground can be studied, which will make the absorption too weak to be detected by normal instruments. The VCD in winter Tokyo area was observed and analyzed by differential method, which shows a good precision even when the absorption is as low as 3%. The largest average VCD was about 1.3 × 1017 cm-2, and the lowest was about 1.3 × 1016 cm?2. The trend of its variation was almost the same as the ground level observation by Saltzman reagent method. Key words Vertical column density (VCD) - Extraterrestrial solar radiation - NO2 - Atmospheric contamination展开更多
Diffuse solar radiation models play an extremely important role in solar photothermal utilization,resource assess-ment and energy consumption simulation,etc.The accuracy of these diffuse solar radiation models usually...Diffuse solar radiation models play an extremely important role in solar photothermal utilization,resource assess-ment and energy consumption simulation,etc.The accuracy of these diffuse solar radiation models usually need to be evaluated by various statistical parameters.Among these statistical parameters,the Global Performance In-dex(GPI)has been extensively employed in recent years because of its comprehensiveness and wide applicability.This paper takes five cities in China as representatives of 5 typical climate regions,and 12 solar scattered radia-tion models are fitted with the meteorological data of 5 cities.Based on the comparative analysis of the existing GPI calculation methods,this paper points out that there are some defects in the existing GPI,and modifies the existing GPI based on the comprehensive consideration of statistical parameters,normalization preprocessing of statistical parameters,unified evaluation direction of parameters,weight redistribution of statistical parameters,and adjustment of extreme coefficient.12 types of new GPI are established in this paper,and the performance of diffuse solar radiation models are compared based on these GPI.The rationality of GPI corrective measures is analyzed by means of the method reasonable index(MRI).The results show that the GPI calculation method(N10)which takes five corrective measures has the best performance,and the accuracy of the existing GPI can be improved by 13.33 to 65%.展开更多
以昆仑山提孜那甫河流域为研究区,利用中分辨率成像光谱仪(MODIS)提供的大气数据基于Iqbal Model C模型估算晴空大气透射率空间分布,并引入地形开阔度(SVF)和遥感地表反照率数据分别用于估算散射辐射地形阻挡以及反射辐射反照率系数空...以昆仑山提孜那甫河流域为研究区,利用中分辨率成像光谱仪(MODIS)提供的大气数据基于Iqbal Model C模型估算晴空大气透射率空间分布,并引入地形开阔度(SVF)和遥感地表反照率数据分别用于估算散射辐射地形阻挡以及反射辐射反照率系数空间分布,最后结合Kumar模型的直接辐射地形阻挡模拟过程,实现对Kumar模型的改进,改进后模型综合考虑了大气以及地形对太阳辐射的影响。利用改进后模型对研究区地表太阳辐射时空分布进行模拟和分析,基于地面气象站点观测数据对模拟结果进行验证。结果表明:模型估算值与站点观测值存在很好的一致性,相关系数R^(2)为0.96,平均绝对误差(MAE)为1.47 MJ/m^(2),平均绝对相对误差(MARE)为12.26%。春季、夏季以及秋季模型的模拟精度较高,冬季模型的模拟精度较低,可能的原因为冬季MODIS大气数据有所低估。展开更多
文摘Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.
基金supported by National Natural Science Foundation of China(51769010,51979133,51469010 and 51109102).
文摘Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosting(XGBoost),Support Vector Machine(SVM)and Multivariate Adaptive Regression Splines(MARS),to estimate the daily diffuse solar radiation(Rd).The regular meteorological data of 1966-2015 at five stations in China were taken as the input parameters(including mean average temperature(Ta),theoretical sunshine duration(N),actual sunshine duration(n),daily average air relative humidity(RH),and extra-terrestrial solar radiation(Ra)).And their estimation accuracies were subjected to comparative analysis.The three models were first trained using meteorological data from 1966 to 2000.Then,the 2001-2015 data was used to test the trained machine learning model.The results show that the XGBoost had better accuracy than the other two models in coefficient of determination(R2),root mean square error(RMSE),mean bias error(MBE)and normalized root mean square error(NRMSE).The MARS performed better in the training phase than the testing phase,but became less accurate in the testing phase,with the R2 value falling by 2.7-16.9%on average.By contrast,the R2 values of SVM and XGBoost increased by 2.9-12.2%and 1.9-14.3%,respectively.Despite trailing slightly behind the SVM at the Beijing station,the XGBoost showed good performance at the rest of the stations in the two phases.In the training phase,the accuracy growth is small but observable.In addition,the XGBoost had a slightly lower RMSE than the SVM,a signal of its edge in stability.Therefore,the three machine learning models can estimate the daily Rd based on local inputs and the XGBoost stands out for its excellent performance and stability.
文摘In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on building structures or large photovoltaic power plants located in that geographical area. Indeed, the area of southern Italy and in particular Sicily and Calabria are the top of European locations for acquiring solar energy. Some models of diffuse solar irradiance were taken into account to determine panels inclinations that maximized the impinging solar radiation by means of global horizontal solar radiation data provided from the Italian Institute of ENEA (Italy). An algorithm was used for the simulation providing a set of tilt angles for each latitude. The optimum tilt angle values obtained from the simulation resulted to be strictly related to the model of diffuse solar radiation that was used. Indeed, the disagreement between the values obtained using anisotropic models of diffuse solar radiation and those obtained from the isotropic model resulted to decrease significantly with increasing solar declination, showing that the isotropic model can be reliable only in summer months.
文摘In this paper new diffuse solar radiation equations were established for Antalya,Turkey.For this purpose current equations from the literature which were functions of the clearness index and/or the sunshine fraction were examined.Nine(9)equations were selected to determine the regression constants of the new equations.In conclusion the best equation among the new equations was introduced on the basis of different statistical indicators.
文摘The two-stream approximation is applied to solve the multiple scattered radiation transfer equations for an inhomogeneous aerosol atmosphere.The accurate absorption of water vapor,ozone,carbon dioxide and molecular oxygen is calculated.Calculations have been carried out band by band for the beating rate of atmosphere.The results show that the effect of aerosols on solar heating of the atmosphere is significant.
文摘The hourly solar radiation data required for solar energy system design evaluation and performance studies is gener-ally not available for a number of sites especially in remote locations. As such accurate determination of hourly solar radiation data, is important both at horizontal;surfaces and inclined surfaces. A model to estimate global solar radiation using temperature and sunshine hour data has been developed (Chandel et al. [1]) which is used to calculate the hourly solar radiation Data. The hourly solar radiation has also been calculated using Gueymard [2] daily integration approach from the measured daily solar radiation data. These two predicted hourly solar radiation data values are compared with measured hourly values to test the accuracy of the models. The total solar radiation on the inclined surfaces and vertical surfaces for different orientations, have also been estimated. The estimated values are found to be in close agreement with measured values. The method presented can be used to estimate hourly, global, diffuse solar radiation for horizontal surfaces and total solar radiation on inclined and vertical surfaces at different orientations with greater accuracy for any location.
文摘Knowledge about thermal radiation of the atmosphere is rich in hypotheses and theories but poor in empiric evidence. Thereby, the Stefan-Boltzmann relation is of central importance in atmosphere physics, and holds the status of a natural law. However, its empirical foundation is little, tracing back to experiments made by Dulong and Petit two hundred years ago. Originated by Stefan at the end of the 19th century, and theoretically founded afterwards by Boltzmann, it delivers the absolute temperature of a blackbody—or rather of a solid opaque body (SOB)—as a result of the incident solar radiation intensity, the emitted thermal radiation of this body, and the counter-radiation of the atmosphere. Thereby, a similar character of the blackbody radiation—describable by the expression σ·T4—and the atmospheric counter-radiation was assumed. But this appears quite abstruse and must be questioned, not least since no pressure-dependency is provided. Thanks to the author’s recently published work—proposing novel measuring methods—, the possibility was opened-up not only to find an alternative approach for the counter-radiation of the atmosphere, but also to verify it by measurements. This approach was ensued from the observation that the IR-radiative emission of gases is proportional to the pressure and to the square root of the absolute temperature, which could be bolstered by applying the kinetic gas theory. The here presented verification of the modified counter-radiation term A·p·T0.5 in the Stefan-Boltzmann relation was feasible using a direct caloric method for determining the solar absorption coefficients of coloured aluminium-plates and the respective limiting temperatures under direct solar irradiation. For studying the pressure dependency, the experiments were carried out at locations with different altitudes. For the so-called atmospheric emission constant A an approximate value of 22 Wm-2 bar-1 K-0.5 was found. In the non-steady-state, the total thermal emission power of the soil is given by the difference between its blackbody radiation and the counter-radiation of the atmosphere. This relation explains to a considerable part the fact that on mountains the atmospheric temperature is lower than on lowlands, in spite of the enhanced sunlight intensity. Thereto, the so-called greenhouse gases such as carbon-dioxide do not have any influence.
文摘Bsaed on two-stream approximation, the upward and downward diffuse solar radiation flux densities, M_i^+ and M_i^-, in a plane-parallel atmosphere can be expressed
基金support of the National Natural Science Foundation of China(Grant No52178083)Open Project of Key Laboratory of Solar Energy Utilization&Energy Saving Technology of Zhejiang Province(Grant No.JSYJY-KJWZ-2021-011)。
文摘The transparent envelope structure has huge energy-saving potential, which is the key point to reduce building energy consumption and improve the thermal building environment. The solar radiation transmitted through the transparent envelope structure(transmitted solar radiation) is reflected, scattered and absorbed by the indoor surface, which has a significant impact on the heat gain of the building. In this paper, firstly, the diffuse radiation received by different depths of various indoor surfaces is measured by experimental tests, and the distribution function of transmitted diffuse solar radiation(TDSR) on the indoor surface is established. Secondly, the diffuse solar radiation received by the indoor and outdoor surfaces in different seasons is continuously monitored;the variation of TDSR with time is analyzed, and the distribution function of TDSR on indoor surface with time is proposed. Finally, based on the temporal and spatial distribution characteristics of diffuse radiation under different weather conditions, the variation of TDSR with the weather is studied, and the distribution function of TDSR on the indoor surface with weather changes is established. The distribution function of the TDSR on the indoor surface under different depths, time and weather conditions obtained in this study can supplement and improve the theory of building heat gain and load, and help accurate simulation of building energy consumption.
基金supported by the Assistance Programmes of the University of Alicante “Programa de Redes-I3CE de calidad,innovación e investigación en docencia universitaria.Convocatoria 2018-19.Alicante:Instituto de Ciencias de la Educación(ICE) de la Universidad de Alicante.”“Programa de Redes-I3CE de calidad,innovación e investigación en docencia universitaria.Convocatoria 2020-21.Alicante:Instituto de Ciencias de la Educación (ICE) de la Universidad de Alicante.”Research Group VIGROB-116 (University of Alicante)。
文摘The present study evaluates ground-based downward surface shortwave radiation (Rs) over the coastal region of Alicante (Southeastern Spain).Hourly measurements collected over the eleven-year period 2010-2020 are used.Two weather stations located over the region capital,Alicante,have been selected as representative of urban and suburban typologies.Two additional weather stations far from the city have been selected representing rural typologies.Rs is significantly reduced over the urban station during the morning hours within the winter season compared to the observations recorded over the suburban and rural stations,with a global mean difference of-81 and-120 W/m^(2)at 10 LT,respectively.However,no significant differences are obtained during the midday sun,with a global mean difference of-20 W/m^(2)between the urban and rural stations.With the aim of explaining these differences,the current paper investigates the relationship between Rsand different air pollutants:NOx,SO_(2),and fine particulate matter (PM_(2.5)and PM_(10)) as well as the wind field measured at the urban and suburban stations.The results found in this work point towards a close relationship between Rsand NOxconcentrations annual cycles,which are also influenced by the prevailing wind circulations observed over the study area.A global mean NOxconcentration of 107μg/m^(3)is observed over the urban station at 10 LT during the winter season.In contrast,these high concentrations are significantly reduced over the suburban station,with global mean value of 40μg/m^(3)at 10 LT,for this period of the year.
基金supported by NSFC grants 41474139,41731068,and 41674164the support from the China Postdoctoral Science Foundation through grant 2019 M650316。
文摘We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.
文摘The main objective of this paper is to predict the diffuse solar energy on a horizontal surface by using data of global solar energy (H) and diffuse solar energy (H<sub>d</sub>) at different selected geographical locations in Saudi Arabia during the period time from 1980 to 2019. The low values of the root mean square error RMSE for all correlations indicated a good agreement between the measured and calculated values of H<sub>d</sub>. The negative values of mean percentage error MPE % for all models show that for all locations, the proposed correlations slightly overestimate H<sub>d</sub>, and the absolute values of MPE never reach 1.35%. The first, second and third order correlations between the diffuse solar fraction H<sub>d</sub>/H and the clearness index K<sub>t</sub> and between the diffuse transmittance H<sub>d</sub>/H<sub>0</sub> and the sunshine hours have been proposed for the selected locations using the method of regression analysis. The differences between the measured and calculated values of H<sub>d</sub> show that a first order correlation between H<sub>d</sub>/H and K<sub>t</sub> can be used for estimating H<sub>d</sub> at the present locations with good accuracy. However, second order correlations between Hd/H or H<sub>d</sub>/H<sub>0</sub> and S/S<sub>o</sub> are recommended for estimating H<sub>d</sub> at these locations. The average annual differences between measured and calculated values of diffuse solar energy H<sub>d</sub> on horizontal at selected sites in the present research are discussed.
文摘For the measurement of atmospheric NO2 vertical column density (VCD), Kitt Peak Solar Flux Atlas can be substituted as an extraterrestrial solar radiation. Compared with differential analysis method, the Taylor expansion of integrated transfer equation underestimates the VCD. This underestimation is as large as 35% when the amount of NO2 is 1 × 1017 cm?2 and observation is conducted with an air mass factor of 10. Even when the VCD is 2 × 1016 cm?2 and the air mass factor is 4, the relative error of the retrieved VCD is still no less than 3%. If the observation is restricted under the small air mass factor condition (≤ 4), with Kitt Peak Solar spectrum as an extraterrestrial solar radiation, only an atmospheric layer of 2 km thick from ground can be studied, which will make the absorption too weak to be detected by normal instruments. The VCD in winter Tokyo area was observed and analyzed by differential method, which shows a good precision even when the absorption is as low as 3%. The largest average VCD was about 1.3 × 1017 cm-2, and the lowest was about 1.3 × 1016 cm?2. The trend of its variation was almost the same as the ground level observation by Saltzman reagent method. Key words Vertical column density (VCD) - Extraterrestrial solar radiation - NO2 - Atmospheric contamination
基金This research has been supported by National Natural Science Foun-dation of China(Grant No.52178083)Anhui Province Key Labora-tory of Intelligent Building and Building Energy Saving,Anhui Jianzhu University(Grant No.IBES2020KF12)Open Project of State Key Laboratory of Clean Energy Utilization,Zhejiang University(Grant No.ZJUCEU2020024).
文摘Diffuse solar radiation models play an extremely important role in solar photothermal utilization,resource assess-ment and energy consumption simulation,etc.The accuracy of these diffuse solar radiation models usually need to be evaluated by various statistical parameters.Among these statistical parameters,the Global Performance In-dex(GPI)has been extensively employed in recent years because of its comprehensiveness and wide applicability.This paper takes five cities in China as representatives of 5 typical climate regions,and 12 solar scattered radia-tion models are fitted with the meteorological data of 5 cities.Based on the comparative analysis of the existing GPI calculation methods,this paper points out that there are some defects in the existing GPI,and modifies the existing GPI based on the comprehensive consideration of statistical parameters,normalization preprocessing of statistical parameters,unified evaluation direction of parameters,weight redistribution of statistical parameters,and adjustment of extreme coefficient.12 types of new GPI are established in this paper,and the performance of diffuse solar radiation models are compared based on these GPI.The rationality of GPI corrective measures is analyzed by means of the method reasonable index(MRI).The results show that the GPI calculation method(N10)which takes five corrective measures has the best performance,and the accuracy of the existing GPI can be improved by 13.33 to 65%.
文摘以昆仑山提孜那甫河流域为研究区,利用中分辨率成像光谱仪(MODIS)提供的大气数据基于Iqbal Model C模型估算晴空大气透射率空间分布,并引入地形开阔度(SVF)和遥感地表反照率数据分别用于估算散射辐射地形阻挡以及反射辐射反照率系数空间分布,最后结合Kumar模型的直接辐射地形阻挡模拟过程,实现对Kumar模型的改进,改进后模型综合考虑了大气以及地形对太阳辐射的影响。利用改进后模型对研究区地表太阳辐射时空分布进行模拟和分析,基于地面气象站点观测数据对模拟结果进行验证。结果表明:模型估算值与站点观测值存在很好的一致性,相关系数R^(2)为0.96,平均绝对误差(MAE)为1.47 MJ/m^(2),平均绝对相对误差(MARE)为12.26%。春季、夏季以及秋季模型的模拟精度较高,冬季模型的模拟精度较低,可能的原因为冬季MODIS大气数据有所低估。