High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end m...High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end mapping function from low-resolution image to high-resolution image through neural network model learning, which can recover the high-frequency information of the image. However, when used to reconstruct the sun speckle image with single feature, more noise and fuzzy local details, there are some shortcomings such as too smooth edge and easy loss of high-frequency information. In this paper, the structure features of input image and reconstructed image are added to CycleGAN network to get MCycleGAN. High frequency information is obtained from structural features by generator network, and the feature difference is calculated to enhance the ability of network to reconstruct high-frequency information. The edge of the reconstructed image is clearer. Compared with the speckle mask method level 1+ used by Yunnan Observatory, the results show that the proposed algorithm has the advantages of small error, fast reconstruction speed and high image clarity.展开更多
文摘High-resolution reconstruction of solar speckle image is one of the important research contents in astronomical image processing. High-resolution image reconstruction based on deep learning can obtain the end-to-end mapping function from low-resolution image to high-resolution image through neural network model learning, which can recover the high-frequency information of the image. However, when used to reconstruct the sun speckle image with single feature, more noise and fuzzy local details, there are some shortcomings such as too smooth edge and easy loss of high-frequency information. In this paper, the structure features of input image and reconstructed image are added to CycleGAN network to get MCycleGAN. High frequency information is obtained from structural features by generator network, and the feature difference is calculated to enhance the ability of network to reconstruct high-frequency information. The edge of the reconstructed image is clearer. Compared with the speckle mask method level 1+ used by Yunnan Observatory, the results show that the proposed algorithm has the advantages of small error, fast reconstruction speed and high image clarity.