With the approaching of the 24th solar cycle peak year (2012-2014), the impacts of super solar storms on the geospace envi- ronment have drawn attentions. Based on the geomagnetic field observations during Carringto...With the approaching of the 24th solar cycle peak year (2012-2014), the impacts of super solar storms on the geospace envi- ronment have drawn attentions. Based on the geomagnetic field observations during Carrington event in 1859, we estimate the interplanetary solar wind conditions at that time, and investigate the response of the magnetosphere-ionosphere system to this extreme solar wind conditions using global 3D MHD simulations. The main findings include: l) The day-side magnetopause and bow shock are compressed to 4.3 and 6.0 Re (Earth radius), and their flanks are also strongly compressed. The magneto- pause shifts inside the geosynchronous orbit, exposing geosynchronous satellites in the solar wind in the magnetosheath. 2) During the storm, the region-1 current increases by about 60 times, and the cross polar potential drop increases by about 80 times; the reconnection voltage is about 5 to 6 times larger than the average storms, which means a larger amount of the solar wind energy enters the magnetosphere, resulting in strong space weather phenomena.展开更多
Mitigation of the large scale yellow dust storm is a serious problem facing China. We propose the approach of building windbreak walls equipped with solar panels in the proximity of dust origins. The solar panels gene...Mitigation of the large scale yellow dust storm is a serious problem facing China. We propose the approach of building windbreak walls equipped with solar panels in the proximity of dust origins. The solar panels generate electricity in the sunny days; the walls break the wind and remove airborne dusts based on the impactor principle during wind storms. Preliminary calculation indicates the walls may be able to remove the major fraction of the airborne dusts and the generated electricity could be significant. More detailed studies are needed to prove the feasibility of the approach.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 40921063, 40974106,40831060)the special fund for State Key Laboratory of Ministry of Science and Technology
文摘With the approaching of the 24th solar cycle peak year (2012-2014), the impacts of super solar storms on the geospace envi- ronment have drawn attentions. Based on the geomagnetic field observations during Carrington event in 1859, we estimate the interplanetary solar wind conditions at that time, and investigate the response of the magnetosphere-ionosphere system to this extreme solar wind conditions using global 3D MHD simulations. The main findings include: l) The day-side magnetopause and bow shock are compressed to 4.3 and 6.0 Re (Earth radius), and their flanks are also strongly compressed. The magneto- pause shifts inside the geosynchronous orbit, exposing geosynchronous satellites in the solar wind in the magnetosheath. 2) During the storm, the region-1 current increases by about 60 times, and the cross polar potential drop increases by about 80 times; the reconnection voltage is about 5 to 6 times larger than the average storms, which means a larger amount of the solar wind energy enters the magnetosphere, resulting in strong space weather phenomena.
文摘Mitigation of the large scale yellow dust storm is a serious problem facing China. We propose the approach of building windbreak walls equipped with solar panels in the proximity of dust origins. The solar panels generate electricity in the sunny days; the walls break the wind and remove airborne dusts based on the impactor principle during wind storms. Preliminary calculation indicates the walls may be able to remove the major fraction of the airborne dusts and the generated electricity could be significant. More detailed studies are needed to prove the feasibility of the approach.