The potential coupling between discrete releases of solar energy within the 2.8 GHz band and increments of seismic energy could suggest alternative mechanisms for solar-terrestrial interactions. Daily measures of Sola...The potential coupling between discrete releases of solar energy within the 2.8 GHz band and increments of seismic energy could suggest alternative mechanisms for solar-terrestrial interactions. Daily measures of Solar Flux Units (SFU) and the average energy of global earthquakes between 0.01 and 1 M for a 5 year period (2009-2013) shared about 25% of the same variance (r = -0.50). Average energies from the other successive 1 M intervals did not display the strength of this effect or were not statistically significant. The slope of the association indicated that for every 10-22 W/m2Hz1 decrease in daily SFUs, the average energy per earthquake in the 0.01 to 1 M range increased over the earth’s surface area on average by ~3 × 10-12 J/m2. The discrepancy of ~1010 in energy density was accommodated by multiplication of the solar unit by the frequency equivalent (1.39 × 1010 Hz/T) of the Bohr magneton and its intrinsic magnetic field strength. Although the results and the convergent quantification suggest a coupling between the mechanisms responsible for fluctuations in 2.8 GHz power from the sun and the energies of the smallest magnitude earthquake activities as predicted, the presence of a third factor related to time or to the sun’s movement through space must still be accommodated.展开更多
随着“双碳”目标不断推进,可再生能源的装机容量和发电占比不断增加。然而,以风电、光伏为代表的可再生能源所固有的不确定性和波动性,使得以火电机组深度调峰为主的传统运行方式的经济性难以得到保障。针对上述问题,提出一种含聚合光...随着“双碳”目标不断推进,可再生能源的装机容量和发电占比不断增加。然而,以风电、光伏为代表的可再生能源所固有的不确定性和波动性,使得以火电机组深度调峰为主的传统运行方式的经济性难以得到保障。针对上述问题,提出一种含聚合光热发电(Concentrating Solar Power,CSP)和深度调峰火电机组的电力系统分布鲁棒机会约束优化调度方法。首先,分析火电机组的基本调峰和深度调峰能力,构建考虑火电机组进行基本调峰或深度调峰成本的深度调峰模型。其次,分析光热电站启动时的热量传递过程,构建考虑启动热量约束的CSP模型。在此基础上,采用基于数据驱动的分布鲁棒机会约束描述可再生能源出力的不确定性,构建以火电机组发电成本、购售电成本和储能使用成本之和最小为优化目标的调度模型。最后,以改进的IEEE 30节点系统为例验证了所提方法具有较好的经济性和鲁棒性。展开更多
Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structu...Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.展开更多
文摘The potential coupling between discrete releases of solar energy within the 2.8 GHz band and increments of seismic energy could suggest alternative mechanisms for solar-terrestrial interactions. Daily measures of Solar Flux Units (SFU) and the average energy of global earthquakes between 0.01 and 1 M for a 5 year period (2009-2013) shared about 25% of the same variance (r = -0.50). Average energies from the other successive 1 M intervals did not display the strength of this effect or were not statistically significant. The slope of the association indicated that for every 10-22 W/m2Hz1 decrease in daily SFUs, the average energy per earthquake in the 0.01 to 1 M range increased over the earth’s surface area on average by ~3 × 10-12 J/m2. The discrepancy of ~1010 in energy density was accommodated by multiplication of the solar unit by the frequency equivalent (1.39 × 1010 Hz/T) of the Bohr magneton and its intrinsic magnetic field strength. Although the results and the convergent quantification suggest a coupling between the mechanisms responsible for fluctuations in 2.8 GHz power from the sun and the energies of the smallest magnitude earthquake activities as predicted, the presence of a third factor related to time or to the sun’s movement through space must still be accommodated.
文摘随着“双碳”目标不断推进,可再生能源的装机容量和发电占比不断增加。然而,以风电、光伏为代表的可再生能源所固有的不确定性和波动性,使得以火电机组深度调峰为主的传统运行方式的经济性难以得到保障。针对上述问题,提出一种含聚合光热发电(Concentrating Solar Power,CSP)和深度调峰火电机组的电力系统分布鲁棒机会约束优化调度方法。首先,分析火电机组的基本调峰和深度调峰能力,构建考虑火电机组进行基本调峰或深度调峰成本的深度调峰模型。其次,分析光热电站启动时的热量传递过程,构建考虑启动热量约束的CSP模型。在此基础上,采用基于数据驱动的分布鲁棒机会约束描述可再生能源出力的不确定性,构建以火电机组发电成本、购售电成本和储能使用成本之和最小为优化目标的调度模型。最后,以改进的IEEE 30节点系统为例验证了所提方法具有较好的经济性和鲁棒性。
文摘Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.