期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimised Design and Analysis of Solar Water Pumping Systems for Pakistani Conditions
1
作者 Usman Ashraf M. Tariq Iqbal 《Energy and Power Engineering》 2020年第10期521-542,共22页
This paper is about the optimized design and analysis of two solar water pumping systems in which one of the systems is designed with a battery bank and other with a cylindrical water tank for a selected site in Pakis... This paper is about the optimized design and analysis of two solar water pumping systems in which one of the systems is designed with a battery bank and other with a cylindrical water tank for a selected site in Pakistan. The design, sizing, cost analysis and steady state analysis of the proposed systems were done in HOMER and dynamic analysis of the designed system with battery bank was performed in MATLAB/Simulink. The simulations performed in HOMER involved proper mapping of the loads which helped to evaluate the PV panel requirement, inverter rating, batteries (in case of battery based solution), modeling of water tank as a deferrable load (in case of solution based of water tank) and detailed cost analysis for a life time of 25 years. To verify the design of the solar water pumping system with battery bank, a simulation in MATLAB/Simulink for study of dynamic behavior of the overall system was performed which involved mathematical modeling of a PV panel, buckboost converter, inverter, battery bank and motor/pump, a perturb and observe maximum power point tracking algorithm based control system. Analysis was conducted based on the economic results that indicate designed solar water pumping system with water tank would be a cheaper solution as compared to solar water pumping system with a battery bank. This work can be taken as a case study for the understanding and optimized designs of solar water pumping system with battery bank and with cylindrical tank in Pakistani conditions. 展开更多
关键词 solar water pumping System MATLAB Simulink solar Energy HOMER Manual Formulation Methods Computers Based Method Steady State Modeling Dynamic Modeling solar Panels
下载PDF
Utilization of Solar Energy in Irrigation Systems in Bangladesh
2
作者 Mushfiq Us Salehin Juhirul Islam Joy +2 位作者 Sheikh Walid Hasan Miftahul Jannat Babui Fardeen Khan 《Energy and Power Engineering》 2023年第12期468-481,共14页
The demand for water pumping in urban water supply and irrigation in Bangladesh is significantly influenced by electricity deficits and high diesel costs. To address these challenges, the adoption of solar power for w... The demand for water pumping in urban water supply and irrigation in Bangladesh is significantly influenced by electricity deficits and high diesel costs. To address these challenges, the adoption of solar power for water pumping emerges as a viable alternative to traditional systems reliant on grid power and diesel. In recent years, there has been a growing emphasis on clean and renewable energies, aligning with the environmental and economic priorities of Bangladesh. The agricultural sector, serving as the backbone of the country’s economy, witnesses an escalating demand for water as the population increases. The extraction and transfer of water for agricultural and drinking purposes translate to high-energy consumption. Leveraging the abundant and essentially free solar energy, particularly during the crop growth periods when irrigation is crucial, presents an optimal solution. This study underscores the underutilization of this vital resource in Bangladesh and advocates for the widespread implementation of solar energy conversion programs, specifically in photovoltaic pumping systems. By comparing these systems with conventional diesel pumps, this paper aims to inspire policymakers, statesmen, and industry professionals to integrate green energy into the water sector. The envisioned outcome is a strategic shift towards sustainable development, with a focus on harnessing solar power to pump water for villages and agriculture, thus contributing to economic and environmental sustainability. 展开更多
关键词 solar water Pump PV Panel Renewable Energy Submersible Pump solar Energy
下载PDF
Design,simulation of different configurations and life-cycle cost analysis of solar photovoltaic-water-pumping system for agriculture applications:use cases and implementation issues
3
作者 L.Ashok Kumar C.N.Lakshmiprasad +1 位作者 G.Ramaraj G.Sivasurya 《Clean Energy》 EI 2022年第2期335-352,共18页
Water is an essential resource for agriculture and the majority of land is irrigated through borewells or wells.The power requirement for an irrigation pump motor is fed by the on-grid power supply but the availabilit... Water is an essential resource for agriculture and the majority of land is irrigated through borewells or wells.The power requirement for an irrigation pump motor is fed by the on-grid power supply but the availability of electricity in rural areas is still questionable.With rising concerns about global warming and the rise in carbon footprints,it is necessary to choose clean and green energy,thereby attaining self-sustainable life.India receives yearly a mean solar irradiation of 6.5 kWh/m^(2)day.Hence,a solar photovoltaic-water-pumping system(SPV-WPS)is a suitable alternative to grid energy;thereby,the farmers would generate electricity through the solar photovoltaic system and become self-sufficient in their energy needs.In this paper,two different agricultural fields in Tamil Nadu,India that deploy flood irrigation and drip irrigation are taken as a case study.The paper discusses the concerns on the use of grid power and their carbon footprint,design and simulation of 4-and 5.5-kW SPV-WPSs using PVsyst 7.1.1,and the advantages of using SPV-WPSs and life-cycle cost analysis on different use cases.The Government of India has introduced a special scheme to promote the installation of SPV-WPSs by offering attractive incentives through PM-Kisan Urja Suraksha evam Utthaan Mahabhiyan(KUSUM)yojana.The results of the case study show that with the use of SPV-WPSs,either with or without subsidy,the farmer could gain a minimum of 250%on the investment with a project lifetime of 25 years. 展开更多
关键词 solar water pump PVsyst PM-KUSUM subsidy life-cycle cost sustainable development goal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部