We carried out one-dimensional hybrid simulations of resonant scattering of protons and He2+ ions by ion cyclotron waves in an initially homogeneous, collisionless and magnetized plasma. The initial ion cyclotron wave...We carried out one-dimensional hybrid simulations of resonant scattering of protons and He2+ ions by ion cyclotron waves in an initially homogeneous, collisionless and magnetized plasma. The initial ion cyclotron waves have a power spectrum and propagate both outward and inward. Due to the resonant interaction with the protons and He2+ ions, the wave power will be depleted in the resonance region. Both the protons and He2+ ions can be resonantly heated in the direction perpendicular to the ambient magnetic field and leading to anisotropic velocity distributions, with the anisotropy higher for the He2+ ions than for the protons. At the same time, the anisotropies of the protons and He2+ ions are inversely correlated with the plasma β||p= 8πnpkBT||p/b02, consistent with the prediction of the quasilinear theory (QLT).展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
This paper presents the generation of kinetic Alfv én wave(KAW) coherent structures of magnetic filaments applicable to solar wind at 1 AU,when the background plasma density is modified by parallel ponderomotive ...This paper presents the generation of kinetic Alfv én wave(KAW) coherent structures of magnetic filaments applicable to solar wind at 1 AU,when the background plasma density is modified by parallel ponderomotive force and Joule heating.The inhomogeneity in the magnetic field,which was included as a perturbation in the transverse direction of the magnetic field,takes energy from the main pump KAWs and generates the filamentary structures.When the intensity is high enough,the filaments are broken down and the energy initially confined to low wavenumbers is redistributed to higher wavenumbers,leading to cascades of energy at small scales less than the ion acoustic gyroradius or comparable to electron gyroradius.The magnetic field spectral profile is generated from the numerical simulation results,and its dependence on different directions of the wavevector and initial conditions of the simulation representing the transverse magnetic field inhomogeneity is studied.The relevance of these results with other spacecraft observations and measurements is also pointed out.展开更多
Resonant heating of H, O+5, and Mg+9 by parallel propagating ion cyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is sh...Resonant heating of H, O+5, and Mg+9 by parallel propagating ion cyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is shown that the particle-AlfVen-wave interaction is a significant microscopic process. The temperatures of the ions are rapidly increased up to the observed order in only microseconds, which implies that simply inserting the quasilinear heating rate into the fluid/MHD energy equation to calculate the radial dependence of ion temperatures may cause errors as the time scales do not match. Different species ions are heated by Alfven waves with a power law spectrum in approximately a mass order. To heat O+5 over Mg+9 as measured by the Ultraviolet Coronagraph Spectrometer (UVCS) in the solar coronal hole at a region ≥ 1.9.R, the energy density of Alfven waves with a frequency close to the O+5-cyclotron frequency must be at least double of that at the Mg+9-cyclotron frequency. With an appropriate wave-energy spectrum, the heating of H, O+5 and Mg+9 can be consistent with the UVCS measurements in solar coronal holes at a heliocentric distance.展开更多
Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral s...Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.展开更多
An observational result from March 12 to April 15 for comet Hale-Bopp is given in this paper. During this period a fan-shaped erupted region with angular extent of about 100 degrees near the nucleus was seen continual...An observational result from March 12 to April 15 for comet Hale-Bopp is given in this paper. During this period a fan-shaped erupted region with angular extent of about 100 degrees near the nucleus was seen continually. In addition, a shell structure with at most 5 layers often appeared. It is found that these layers were equal-spaced with a distance of about 2×10 4 km and were moving outward with a speed of about 35 m/s. It is suggested that this phenomenon was possibly a kind of wave created by charged attogram dust grains erupted from the nucleus, which collided with either the solar wind or material of the coma. The propagation period of the wave was about 6 days but the spin of the Comet Hale-Bopp could be very slow and the period was about 3 yr. This spin movement had the opposite direction as its orbital motion.展开更多
Based on the WIND observational data for the plasma waves from thermal noise receptor (TNR) working on the frequency 4―256 kHz and the solar wind and the magnetic fields, we analyze the plasma wave activities in the ...Based on the WIND observational data for the plasma waves from thermal noise receptor (TNR) working on the frequency 4―256 kHz and the solar wind and the magnetic fields, we analyze the plasma wave activities in the 60 magnetic cloud’s boundary layers (BLs) and find that there are often various plasma wave activities in the BLs, which are different from those in the adjacent solar wind (SW) and the magnetic clouds (MC). The basic characteris-tics are that: (1) the enhancement of the Langmuir wave near the electronic plasma frequency (fpe) is a dominant wave ac-tivity, which occupies 75% investigated samples; (2) the events enhanced both in the langmuir and ion acustic (f < fpe) waves are about 60% of investigated samples; (3) broadband, continuous enhancement events in the plasma wave activities were observed in the whole frequency band of TNR, and about 30% of the 60 samples, however, were not observed in the SW and the MC investigated events; (4) although the ratio of the temperatures between the electon and proton, Te/Tp≤1, the ion caustic wave enhancement activities are still often observed in the BLs, which makes it difficult to ex- plain them by the traditional plasma theory. New results reported in this paper further show that the magnetic cloud’s BL is an important dynamic structure, which could provide useful diagnosis for understanding the cloud’s BL physics and could expand a space developing space plasma wave theory.展开更多
Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). ...Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.展开更多
As for the present situation of coronal mass ejection (CME) triggering models, the distributions of Alfv@n waves in flux ropes are different from model to model, and thus examining those distributions in interplanet...As for the present situation of coronal mass ejection (CME) triggering models, the distributions of Alfv@n waves in flux ropes are different from model to model, and thus examining those distributions in interplanetary coronal mass ejection (ICME) is an effective way to connect ICME observations with these theoretical models of CME triggering. However, previous observations of Alfv@nic fluctuations in ICMEs were rare with locations ranging from 0.3 AU to 0.68 AU only, which is usually explained as rapid dissipation of those remnant waves. Here we present an observation of Alfv@n waves in a magnetic cloud (MC) near 1 AU, in situ detected by WIND in February 17,-~20, 2011. The MC was generated by a CME accompanied with the first X-class flare in the 24th solar cycle. The slope of the power spectral densities of magnetic fluctuation in the MC, are similar to those modes in ambient solar wind, but more anisotropic. The results will also be helpful for studies of CME theories and ICME thermodynamics.展开更多
太阳风的演化过程是空间物理研究中的重要课题,高频静电波因与太阳风粒子的分布息息相关而受到广泛关注.最新的帕克太阳探测器(Parker Solar Probe,PSP)在近日太阳风(日心距离r<0.3 AU)中观测到多种高频静电波动,为研究近日太阳风中...太阳风的演化过程是空间物理研究中的重要课题,高频静电波因与太阳风粒子的分布息息相关而受到广泛关注.最新的帕克太阳探测器(Parker Solar Probe,PSP)在近日太阳风(日心距离r<0.3 AU)中观测到多种高频静电波动,为研究近日太阳风中波粒相互作用提供了新机遇.介绍了近日太阳风中高频静电波的观测现状,总结了各类波动的观测特征,包括已知波动模式的宽带离子声波、电子伯恩斯坦波和多种未知模式的静电波,梳理了各个波动可能的激发方式或自由能来源,并对未来可能的工作方向进行了展望.展开更多
Electromagnetic ion cyclotron (EMIC) waves,particularly their generation and excitation mechanisms,have been a subject of wide interest because of their potential importance in ion acceleration and heating.In this wor...Electromagnetic ion cyclotron (EMIC) waves,particularly their generation and excitation mechanisms,have been a subject of wide interest because of their potential importance in ion acceleration and heating.In this work,the parameter-dependence of EMIC instabilities is investigated with a combined loss-cone and temperature anisotropy distribution for suprathermal ions.The calculation of the linear growth rate of EMIC waves with an arbitrary propagation angle is presented.The results show that the growth rates of EMIC waves propagating quasi-perpendicular to the ambient magnetic field increase as the loss-cone parameter α increases,whereas the growth rates of EMIC waves propagating quasi-parallel to the ambient magnetic field increase as the temperature anisotropy parameter AT increases.This indicates that the free energies associated with the loss-cone and temperature anisotropic distributions are primarily responsible for the excitation of the quasi-perpendicular and parallel propagating EMIC waves,respectively,and provides us with a more comprehensive understanding of excitation and generation mechanisms for EMIC waves in space plasmas.展开更多
Turbulent air flows over developing wind waves in the air-sea boundary layer are numerically simulated without considering wave breaking. Influences of wind waves on air flows are considered using a model of significa...Turbulent air flows over developing wind waves in the air-sea boundary layer are numerically simulated without considering wave breaking. Influences of wind waves on air flows are considered using a model of significant wave and surface roughness, with a formula proposed for calculating the surface roughness. κ-ε model is adopted to simulate turbulent flows. The results of the drag coefficient and turbulence characteristics agree well with the observations.展开更多
基金the National Natural Science Foundation of China.
文摘We carried out one-dimensional hybrid simulations of resonant scattering of protons and He2+ ions by ion cyclotron waves in an initially homogeneous, collisionless and magnetized plasma. The initial ion cyclotron waves have a power spectrum and propagate both outward and inward. Due to the resonant interaction with the protons and He2+ ions, the wave power will be depleted in the resonance region. Both the protons and He2+ ions can be resonantly heated in the direction perpendicular to the ambient magnetic field and leading to anisotropic velocity distributions, with the anisotropy higher for the He2+ ions than for the protons. At the same time, the anisotropies of the protons and He2+ ions are inversely correlated with the plasma β||p= 8πnpkBT||p/b02, consistent with the prediction of the quasilinear theory (QLT).
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
文摘This paper presents the generation of kinetic Alfv én wave(KAW) coherent structures of magnetic filaments applicable to solar wind at 1 AU,when the background plasma density is modified by parallel ponderomotive force and Joule heating.The inhomogeneity in the magnetic field,which was included as a perturbation in the transverse direction of the magnetic field,takes energy from the main pump KAWs and generates the filamentary structures.When the intensity is high enough,the filaments are broken down and the energy initially confined to low wavenumbers is redistributed to higher wavenumbers,leading to cascades of energy at small scales less than the ion acoustic gyroradius or comparable to electron gyroradius.The magnetic field spectral profile is generated from the numerical simulation results,and its dependence on different directions of the wavevector and initial conditions of the simulation representing the transverse magnetic field inhomogeneity is studied.The relevance of these results with other spacecraft observations and measurements is also pointed out.
基金Supported by the National Natural Science Foundation of China.
文摘Resonant heating of H, O+5, and Mg+9 by parallel propagating ion cyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is shown that the particle-AlfVen-wave interaction is a significant microscopic process. The temperatures of the ions are rapidly increased up to the observed order in only microseconds, which implies that simply inserting the quasilinear heating rate into the fluid/MHD energy equation to calculate the radial dependence of ion temperatures may cause errors as the time scales do not match. Different species ions are heated by Alfven waves with a power law spectrum in approximately a mass order. To heat O+5 over Mg+9 as measured by the Ultraviolet Coronagraph Spectrometer (UVCS) in the solar coronal hole at a region ≥ 1.9.R, the energy density of Alfven waves with a frequency close to the O+5-cyclotron frequency must be at least double of that at the Mg+9-cyclotron frequency. With an appropriate wave-energy spectrum, the heating of H, O+5 and Mg+9 can be consistent with the UVCS measurements in solar coronal holes at a heliocentric distance.
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 40406008)the Foundation for 0pen Projects of the Key Lab of Physical 0ceanography, the Ministry of Education, China (Grant No. 200309).
文摘Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.
文摘An observational result from March 12 to April 15 for comet Hale-Bopp is given in this paper. During this period a fan-shaped erupted region with angular extent of about 100 degrees near the nucleus was seen continually. In addition, a shell structure with at most 5 layers often appeared. It is found that these layers were equal-spaced with a distance of about 2×10 4 km and were moving outward with a speed of about 35 m/s. It is suggested that this phenomenon was possibly a kind of wave created by charged attogram dust grains erupted from the nucleus, which collided with either the solar wind or material of the coma. The propagation period of the wave was about 6 days but the spin of the Comet Hale-Bopp could be very slow and the period was about 3 yr. This spin movement had the opposite direction as its orbital motion.
基金supported by the National Natural Science Foundation of China(Grant Nos.G200078405,40336053,40274052).
文摘Based on the WIND observational data for the plasma waves from thermal noise receptor (TNR) working on the frequency 4―256 kHz and the solar wind and the magnetic fields, we analyze the plasma wave activities in the 60 magnetic cloud’s boundary layers (BLs) and find that there are often various plasma wave activities in the BLs, which are different from those in the adjacent solar wind (SW) and the magnetic clouds (MC). The basic characteris-tics are that: (1) the enhancement of the Langmuir wave near the electronic plasma frequency (fpe) is a dominant wave ac-tivity, which occupies 75% investigated samples; (2) the events enhanced both in the langmuir and ion acustic (f < fpe) waves are about 60% of investigated samples; (3) broadband, continuous enhancement events in the plasma wave activities were observed in the whole frequency band of TNR, and about 30% of the 60 samples, however, were not observed in the SW and the MC investigated events; (4) although the ratio of the temperatures between the electon and proton, Te/Tp≤1, the ion caustic wave enhancement activities are still often observed in the BLs, which makes it difficult to ex- plain them by the traditional plasma theory. New results reported in this paper further show that the magnetic cloud’s BL is an important dynamic structure, which could provide useful diagnosis for understanding the cloud’s BL physics and could expand a space developing space plasma wave theory.
文摘Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.
基金supported by National Natural Science Foundation of China (Nos.40974104,40731056,and 10975012)Doctoral Fund of Ministry of Education of China (20090001110012)National Key Basic Research Science Foundation of China (2011CB811400,2009GB105004)
文摘As for the present situation of coronal mass ejection (CME) triggering models, the distributions of Alfv@n waves in flux ropes are different from model to model, and thus examining those distributions in interplanetary coronal mass ejection (ICME) is an effective way to connect ICME observations with these theoretical models of CME triggering. However, previous observations of Alfv@nic fluctuations in ICMEs were rare with locations ranging from 0.3 AU to 0.68 AU only, which is usually explained as rapid dissipation of those remnant waves. Here we present an observation of Alfv@n waves in a magnetic cloud (MC) near 1 AU, in situ detected by WIND in February 17,-~20, 2011. The MC was generated by a CME accompanied with the first X-class flare in the 24th solar cycle. The slope of the power spectral densities of magnetic fluctuation in the MC, are similar to those modes in ambient solar wind, but more anisotropic. The results will also be helpful for studies of CME theories and ICME thermodynamics.
文摘太阳风的演化过程是空间物理研究中的重要课题,高频静电波因与太阳风粒子的分布息息相关而受到广泛关注.最新的帕克太阳探测器(Parker Solar Probe,PSP)在近日太阳风(日心距离r<0.3 AU)中观测到多种高频静电波动,为研究近日太阳风中波粒相互作用提供了新机遇.介绍了近日太阳风中高频静电波的观测现状,总结了各类波动的观测特征,包括已知波动模式的宽带离子声波、电子伯恩斯坦波和多种未知模式的静电波,梳理了各个波动可能的激发方式或自由能来源,并对未来可能的工作方向进行了展望.
基金supported by the National Natural Science Foundation of China (10973043,41074107)National Basic Research Program of China (2011CB811402)
文摘Electromagnetic ion cyclotron (EMIC) waves,particularly their generation and excitation mechanisms,have been a subject of wide interest because of their potential importance in ion acceleration and heating.In this work,the parameter-dependence of EMIC instabilities is investigated with a combined loss-cone and temperature anisotropy distribution for suprathermal ions.The calculation of the linear growth rate of EMIC waves with an arbitrary propagation angle is presented.The results show that the growth rates of EMIC waves propagating quasi-perpendicular to the ambient magnetic field increase as the loss-cone parameter α increases,whereas the growth rates of EMIC waves propagating quasi-parallel to the ambient magnetic field increase as the temperature anisotropy parameter AT increases.This indicates that the free energies associated with the loss-cone and temperature anisotropic distributions are primarily responsible for the excitation of the quasi-perpendicular and parallel propagating EMIC waves,respectively,and provides us with a more comprehensive understanding of excitation and generation mechanisms for EMIC waves in space plasmas.
文摘Turbulent air flows over developing wind waves in the air-sea boundary layer are numerically simulated without considering wave breaking. Influences of wind waves on air flows are considered using a model of significant wave and surface roughness, with a formula proposed for calculating the surface roughness. κ-ε model is adopted to simulate turbulent flows. The results of the drag coefficient and turbulence characteristics agree well with the observations.