In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model wi...In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model,the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that,for the day-night and short-time interval alternate operation modes without solar energy,the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile,the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling,and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition,the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The resul...The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.展开更多
To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) metho...To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.展开更多
The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar ene...Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.展开更多
In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfe...In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.展开更多
Based on the basic geology, hydrogeology, engineering geology, geothermal geology and ground source heat pump(GSHP) engineering of the work space, the thesis studies the local shallow geothermal energy. Three conditio...Based on the basic geology, hydrogeology, engineering geology, geothermal geology and ground source heat pump(GSHP) engineering of the work space, the thesis studies the local shallow geothermal energy. Three conditions of the attribute index for the suitability zoning of the northwest of Shandong are determined, namely, hydrodynamic condition, geological and hydrogeological condition and geological environment condition. The assessment result is that the total area of the suitable zone is 205.88 km^2, that of relative suitable zone, 1 407.76 km^2, and that of unsuitable zone, 286.8 km^2. The result conforms to the real development situation and provides experience for similar regions needed for selecting and assigning a value to suitability zoning of GSHP.展开更多
Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is fo...Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is found that parallel operation pattern is better for solar-soil compound system. Furthermore, the heat balance issue of solar-soil compound system was emphatically analyzed from four aspects, which were annual analysis of heating and cooling load, the heat exchange of ground heat exchanger, capacity determination of solar-assisted heat sottrce and heat balance calculation of solar-soil compound system. Moreover, annual rate of heat balance in a solar-soil source heat pump compound system was calculated with a case study. It is shown that the annual heat unbalance ratio is 19%, which is less than 20%. As a result, the practical solar-soil compound system can basically maintain the heat balance of soil.展开更多
An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the ...An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.展开更多
Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running...Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running in high efficiency. A mathematical model determining COP, evaporation temperature and condensation temperature of a single unit was proposed. Under the condition of uniform load distribution, the model was established according to different ways of bearing partial load with the same type multi...展开更多
This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calcu...This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.展开更多
The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is...The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is focused on the parameters acquisition and operation analysis of the GSHP system in Tangshan. Results show the average COPs(coefficient of performance) are2.85 and 2.70 in summer and winter, respectively, and heat(cold) unbalance underground existed after whole year operation. The analysis of data also indicates that the direct borehole air-conditioning saved some power consumption obviously in the early stage of summer and energy saving of the GSHP system depended remarkably on its operation and management level. Besides the observation points of ground temperature are laid for a large-scale GSHP system, and the hydraulic balance of the pipes group needs to be concerned specially in safeguarding better reliability.展开更多
This article gives an overview of using the ground source heat pump (GSHP) and air-to-water heat pump (A&WHP) in cold climate areas for heating and for domestic hot water production of buildings. Computer simulati...This article gives an overview of using the ground source heat pump (GSHP) and air-to-water heat pump (A&WHP) in cold climate areas for heating and for domestic hot water production of buildings. Computer simulation and analysis were carried out for a typical detached house, with 200 m2 of living area, the heat demand of 9 kW and the average heat demand for DHW production of 1 kW. In heating period the average Coefficient of Performance (COP) of the A&WHP is considerably lower than COP of the GSHP.展开更多
A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water t...A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.展开更多
Water source heat pump is a new kind of energy saving process.One of the most common problems for water source heat pump system is the corrosion of the copper in heat exchanger.The quality of water is the key factor.T...Water source heat pump is a new kind of energy saving process.One of the most common problems for water source heat pump system is the corrosion of the copper in heat exchanger.The quality of water is the key factor.The river water collected in six different places of the Yangtze River and Jialing River in Chongqing were analyzed.Various parameters(pH,coexisted ions,and hardness value)were investigated.It showed that the Yangtze River and Jialing River water was suitable for developing water source heat pump technology.Further more,aimed at the temperature and pH of the raw water's variation range in a year,the corrosion behavior of copper material was studied by controlling the water environmental condition.Corrosion rate of copper is accelerated at high temperature and lower pH value.展开更多
The influence of particle migration induced by groundwater source heat pump( GWSHP) operation on aquifer parameters was theoretically analyzed. Then the sensitivity analysis of different influencing factors,which infl...The influence of particle migration induced by groundwater source heat pump( GWSHP) operation on aquifer parameters was theoretically analyzed. Then the sensitivity analysis of different influencing factors,which influenced aquifer parameters with GWSHP operation,was evaluated by using grey relational analysis method through a case study. The present study indicated that the erosion parameter, hydraulic conductivity and initial concentration were critical influencing factors which affected the aquifer parameters and the suitability of GWSHP. It also indicated that the discharge of single well should be controlled and the diameter of single well should be selected appropriately in order to decrease particle migration.展开更多
The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, ...The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.展开更多
This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the conditi...This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.展开更多
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B04)China Postdoctoral Science Foundation(No.20090461050)+1 种基金the Project of Researchand Development of Ministry of Housing and Urban-Rural Development ofChina(No.2008-K1-26)the New Century Talent Project of Yangzhou University for Excellent Young Backbone Teacher(2008)
文摘In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model,the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that,for the day-night and short-time interval alternate operation modes without solar energy,the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile,the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling,and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition,the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
基金Supported by Scientific Research Fund of Ningxia University [(E) ndzr09-23]
文摘The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.
基金Project(50606007) supported by the National Natural Science Foundation of China
文摘To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.
基金Project(GC06A316) supported by the Key Technologies Research and Development Program of Heilongjiang Province, China Project(11531038) supported by the Program of the Educational Commission of Heilongjiang Province of China.
文摘Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.
文摘In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.
基金supported by survey and evaluation of shallow geothermal energy in the main cities,China(12120113077200)
文摘Based on the basic geology, hydrogeology, engineering geology, geothermal geology and ground source heat pump(GSHP) engineering of the work space, the thesis studies the local shallow geothermal energy. Three conditions of the attribute index for the suitability zoning of the northwest of Shandong are determined, namely, hydrodynamic condition, geological and hydrogeological condition and geological environment condition. The assessment result is that the total area of the suitable zone is 205.88 km^2, that of relative suitable zone, 1 407.76 km^2, and that of unsuitable zone, 286.8 km^2. The result conforms to the real development situation and provides experience for similar regions needed for selecting and assigning a value to suitability zoning of GSHP.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2010DFA72740-05) supported by the International Science & Technology Cooperation Program of China
文摘Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is found that parallel operation pattern is better for solar-soil compound system. Furthermore, the heat balance issue of solar-soil compound system was emphatically analyzed from four aspects, which were annual analysis of heating and cooling load, the heat exchange of ground heat exchanger, capacity determination of solar-assisted heat sottrce and heat balance calculation of solar-soil compound system. Moreover, annual rate of heat balance in a solar-soil source heat pump compound system was calculated with a case study. It is shown that the annual heat unbalance ratio is 19%, which is less than 20%. As a result, the practical solar-soil compound system can basically maintain the heat balance of soil.
基金Supported bythe"11th Five-Year Plan"for National Plans of Major Technology Projects
文摘An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.
基金Supported by National Natural Science Foundation of China (No. 50578048)"Heating, Gas, Ventilation and Air Conditioning" Key Laboratory Open Subject in Beijing (No. KF200710)the Postdoctoral Researcher Science Foundation of China (No. 20090450986)
文摘Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running in high efficiency. A mathematical model determining COP, evaporation temperature and condensation temperature of a single unit was proposed. Under the condition of uniform load distribution, the model was established according to different ways of bearing partial load with the same type multi...
基金Supported by National Natural Science Foundation of China(No.1272263)
文摘This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.
基金Project(2012BAJ06B04)supported by"12th Five-Year Plan"National science and Technology,ChinaProject(2014-228)supported by Department of Housing and Urban Rural Development of Hebei,China
文摘The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is focused on the parameters acquisition and operation analysis of the GSHP system in Tangshan. Results show the average COPs(coefficient of performance) are2.85 and 2.70 in summer and winter, respectively, and heat(cold) unbalance underground existed after whole year operation. The analysis of data also indicates that the direct borehole air-conditioning saved some power consumption obviously in the early stage of summer and energy saving of the GSHP system depended remarkably on its operation and management level. Besides the observation points of ground temperature are laid for a large-scale GSHP system, and the hydraulic balance of the pipes group needs to be concerned specially in safeguarding better reliability.
基金supported by the Estonian Research Council,with Institutional research funding grant IUT1-15with the project“Development of efficient tech-nologies for air change and ventilation necessary for the increase of energy efficiency of buildings,AR12045”,financed by SA Archimedesby the project“Civil and Environmental Engineering PhD School,DAR9085”.
文摘This article gives an overview of using the ground source heat pump (GSHP) and air-to-water heat pump (A&WHP) in cold climate areas for heating and for domestic hot water production of buildings. Computer simulation and analysis were carried out for a typical detached house, with 200 m2 of living area, the heat demand of 9 kW and the average heat demand for DHW production of 1 kW. In heating period the average Coefficient of Performance (COP) of the A&WHP is considerably lower than COP of the GSHP.
基金Project(2006BAJ03A06) supported by National Science and Technology Pillar Program During 11th Five-Year Plan
文摘A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.
基金supported by the China Postdoctoral Science Foundation(20080430747)foundation of Chongqing University Young Talents for Promoting the Innovative Force(qnjj2008-7)
文摘Water source heat pump is a new kind of energy saving process.One of the most common problems for water source heat pump system is the corrosion of the copper in heat exchanger.The quality of water is the key factor.The river water collected in six different places of the Yangtze River and Jialing River in Chongqing were analyzed.Various parameters(pH,coexisted ions,and hardness value)were investigated.It showed that the Yangtze River and Jialing River water was suitable for developing water source heat pump technology.Further more,aimed at the temperature and pH of the raw water's variation range in a year,the corrosion behavior of copper material was studied by controlling the water environmental condition.Corrosion rate of copper is accelerated at high temperature and lower pH value.
基金the Fundamental Research Funds for the Central Universities,China(NO.DL12BB09)Science and Technology Research Projects in Heilongjiang Provincial Department of Education,China(NO.12533012)
文摘The influence of particle migration induced by groundwater source heat pump( GWSHP) operation on aquifer parameters was theoretically analyzed. Then the sensitivity analysis of different influencing factors,which influenced aquifer parameters with GWSHP operation,was evaluated by using grey relational analysis method through a case study. The present study indicated that the erosion parameter, hydraulic conductivity and initial concentration were critical influencing factors which affected the aquifer parameters and the suitability of GWSHP. It also indicated that the discharge of single well should be controlled and the diameter of single well should be selected appropriately in order to decrease particle migration.
文摘The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.
文摘This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.