This paper investigates the concept of Cross Polarization (CP) experiment in addition to revisiting the two potential expansion schemes recently developed in the field of solid-state nuclear magnetic resonance (SSNMR)...This paper investigates the concept of Cross Polarization (CP) experiment in addition to revisiting the two potential expansion schemes recently developed in the field of solid-state nuclear magnetic resonance (SSNMR): namely, the Floquet-Magnus expansion and the Fer expansion. We use the aforementioned expansion schemes for the calculation of effective Hamiltonians and propagators when the spin system undergoes Cross Polarization radiation. CP is the gateway experiment into SSNMR. An in-depth comprehension of the underlying mechanics of spin dynamics during the cross-polarization experiment is pivotal for further experimental developments and optimization of more complex solid-state NMR experiments. The main contribution of this work is a prospect related to spin physics;particularly regarding to generalization of the calculation. This work reports original yet interesting novel ideas and developments that include calculations performed on the CP experiment. In fact, the approach presented could play a major role in the interpretation of several fine NMR experiments in solids, which would in turn provide significant new insights in spin physics. The generality of the work points towards potential applications in problems related in solid-state NMR and theoretical developments of spectroscopy as well as interdisciplinary research areas as long as they include spin dynamics concepts.展开更多
Two polymeric complexes, [Cd(BTP)2]n 1 and [Cd(i-BTP)2]n 2, were prepared and investigated by solid 31P and 113Cd NMR spectroscopies. The crystal structure of 2 was determined by X-ray diffraction.
C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, t...C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, the increase of relaxation time of aromatic carbons is larger than that of for aliphatic carbons at transition annealing temperature.展开更多
^13C spin-lattice relaxation times (T1) of a conjugated polymer MEH-PPV in polymer/ layered silicate nanocomposites together with the steady state fluorescence emission and transient fluorescence decay measurements ...^13C spin-lattice relaxation times (T1) of a conjugated polymer MEH-PPV in polymer/ layered silicate nanocomposites together with the steady state fluorescence emission and transient fluorescence decay measurements have been investigated. The T1 values of the conjugated carbons decrease dramatically according to the reduction of polymer concentration in the nano composites, while the fluorescence life times (τ) show a linear prolonging tendency. The results are explained from the point of view of molecular dynamics.展开更多
Solid-state nuclear magnetic resonance spectroscopy was used to investigate the coordinative states of surface Al species on various alkylaluminum-modified Phillips CrOx/SiO2 catalysts.The alkylaluminum-modified Phill...Solid-state nuclear magnetic resonance spectroscopy was used to investigate the coordinative states of surface Al species on various alkylaluminum-modified Phillips CrOx/SiO2 catalysts.The alkylaluminum-modified Phillips CrOx/SiO2 catalysts were examined via ethylene homopolymerization.1H and 27Al magic angle spinning(MAS) nuclear magnetic resonance(NMR) spectra clearly demonstrated that the existing states of surface Al species in alkylaluminum-modified catalysts strongly depended on the type of alkylaluminum cocatalyst,concentration of alkylaluminum and the calcination temperature.1H MAS NMR spectra of alkylaluminum-modified Phillips CrOx/SiO2 catalysts,calcined at two different temperatures,exhibited similar trends in peak shift.1H spectra showed that with an increase of Al/Cr ratio and calcination temperature,the main peak shifted to high field,indicating that the dominant surface proton species changed from hydroxyl to ethoxyl and ethyl groups.27Al MAS NMR spectra showed the presence of three different coordination states(6-,5-,and 4-coordinated Al species) in the alkylaluminummodified Phillips catalysts.In comparison of different alkylaluminum cocatalysts,it was found that the reactivity of alkylaluminum modified Phillips catalyst decreased in the order of TEA〉DEAH〉DEAE.The amount of 4-coordinated Al species of Phillips catalysts modified by TEA,DEAE and DEAH also decreased in the order of TEA〉DEAH〉DEAE,indicating that the presence of 4-coordinated Al species is related to the polymerization activity.展开更多
CO2-based stereocomplexed polycarbonates derived from the intermolecularly interlocked interaction between the enantiopure polymers with the opposite configuration exhibit high crystallinity, excellent thermal and mec...CO2-based stereocomplexed polycarbonates derived from the intermolecularly interlocked interaction between the enantiopure polymers with the opposite configuration exhibit high crystallinity, excellent thermal and mechanical stabilities. Deep insights into the mechanism of stereocomplexation are of particular importance to the design and manufacture of new promising and sustainable polycarbonates with enhanced physicochemical properties. Our solid-state NMR experiments linking with DFT computations clearly reveal the specific chain-chain interactions in a typical stereocomplexed poly(4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0] octane carbonate)(PCXC).13C CP/MAS NMR,1H DUMBO MAS NMR and 13C/1H relaxation-time measurements indicate that the formation of stereocomplex reduces the local mobilities of carbonyl, methine and methylene groups in each chain of PCXC significantly. Through a combination of two-dimensional 1H-13C HETCOR NMR and DFT calculation analysis, the cis-/trans-conformations and packing models of PCXC chains in the amorphous, enantionpure isotactic and stereocomplexed polycarbonates are identified. The splitting of 13C and 1H NMR chemical shifts of methine groups in the backbone carbon region demonstrates the ordered interlock interactions between the R-and S-chain in the stereocomplexed PCXC.展开更多
Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids,...Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids, 2H solid-state NMR spectroscopy can be used to probe the effect of embedded proteins on the order and dynamics of the acyl chains of phospholipid bilayers [8-13]. Moreover, 31P solid-state NMR spectroscopy can be used to investigate the interaction of peptides, proteins and drugs with phospholipid head groups [11-14]. The secondary structure of 13C = O site-specific isotopically labeled peptides or proteins inserted into lipid bilayers can be probed utilizing 13C CPMAS solid-state NMR spectroscopy [15-18]. Also, solid-state NMR spectroscopic studies can be utilized to ascertain pertinent informa- tion on the backbone and side-chain dynamics of 2H- and 15N-labeled proteins, respectively, in phospholipid bilayers [19-26]. Finally, specific 15N-labeled amide sites on a protein embedded inside oriented bilayers can be used to probe the alignment of the helices with respect to the bilayer normal [2]. A brief summary of all these solid-state NMR ap- proaches are provided in this minireview.展开更多
Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the...Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.展开更多
To raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a noncrystalline two-component epoxy electrolyte system has been prepared. The diglycidyl ether ...To raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a noncrystalline two-component epoxy electrolyte system has been prepared. The diglycidyl ether of polyethylene glycols as precursors of the system were synthesized by a two-step process. The presumed structure of the product was characterized, by ^(13)C, ~1H NMR and IR spectroscopy. It was found that a side-reaction occurred between the secondary hydroxyl group of PEG-chlorohydrin and epichlorohydrin in some degree, resulting in a by- product containing—CH_2Cl side group. By selecting a characteristic signal, which is undistorted by the increase in the length of CH_2 CH_2—O segment, a ~1H NMR approach of determining the equivalent epoxy weight (EEW) was proposed. The method is valid to specimens even though the EEW is as high as 2,000. The examination of the specimens by DSC showed that epoxidation greatly depressed the crystallinity of the PEG's, whereas the T_g was raised.展开更多
An nanostructured thermoset blend of unsaturated polyester(UPR) and PEO-PPO-PEO triblock copolymer was prepared and characterized by solid-state NMR and other techniques.It is concluded that the blend is microphase se...An nanostructured thermoset blend of unsaturated polyester(UPR) and PEO-PPO-PEO triblock copolymer was prepared and characterized by solid-state NMR and other techniques.It is concluded that the blend is microphase separated and the determined long period is 20 nm.A distinct dynamic difference between the cured-UPR matrix and block copolymers was observed by 1D and 2D NMR experiments,the formation of PEO crystalline domains was inhibited in the blend.The PEO blocks are partially miscible with the cured-UPR matrix.Upon curing, part of the mobile PEO was locally expelled from the cured-UPR matrix and formed dispersed microphase together with the mobile PPO,the residual immobilized PEO blocks were intimately mixed with the partially cured-UPR, and they formed an interphase region.展开更多
文摘This paper investigates the concept of Cross Polarization (CP) experiment in addition to revisiting the two potential expansion schemes recently developed in the field of solid-state nuclear magnetic resonance (SSNMR): namely, the Floquet-Magnus expansion and the Fer expansion. We use the aforementioned expansion schemes for the calculation of effective Hamiltonians and propagators when the spin system undergoes Cross Polarization radiation. CP is the gateway experiment into SSNMR. An in-depth comprehension of the underlying mechanics of spin dynamics during the cross-polarization experiment is pivotal for further experimental developments and optimization of more complex solid-state NMR experiments. The main contribution of this work is a prospect related to spin physics;particularly regarding to generalization of the calculation. This work reports original yet interesting novel ideas and developments that include calculations performed on the CP experiment. In fact, the approach presented could play a major role in the interpretation of several fine NMR experiments in solids, which would in turn provide significant new insights in spin physics. The generality of the work points towards potential applications in problems related in solid-state NMR and theoretical developments of spectroscopy as well as interdisciplinary research areas as long as they include spin dynamics concepts.
基金financial support of Chinese Scholarship Council.
文摘Two polymeric complexes, [Cd(BTP)2]n 1 and [Cd(i-BTP)2]n 2, were prepared and investigated by solid 31P and 113Cd NMR spectroscopies. The crystal structure of 2 was determined by X-ray diffraction.
基金This work was supported by National Key Project for Fundamental Research (N.95-11) and National Natural Science Foundation of Ch
文摘C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, the increase of relaxation time of aromatic carbons is larger than that of for aliphatic carbons at transition annealing temperature.
基金supported by the National Natural Science Foundation of China(Grant No.20023003).
文摘^13C spin-lattice relaxation times (T1) of a conjugated polymer MEH-PPV in polymer/ layered silicate nanocomposites together with the steady state fluorescence emission and transient fluorescence decay measurements have been investigated. The T1 values of the conjugated carbons decrease dramatically according to the reduction of polymer concentration in the nano composites, while the fluorescence life times (τ) show a linear prolonging tendency. The results are explained from the point of view of molecular dynamics.
基金project sponsored by the Fundamental Research Funds for the Central Universities (No. 13CX05011A and R1304013A)
文摘Solid-state nuclear magnetic resonance spectroscopy was used to investigate the coordinative states of surface Al species on various alkylaluminum-modified Phillips CrOx/SiO2 catalysts.The alkylaluminum-modified Phillips CrOx/SiO2 catalysts were examined via ethylene homopolymerization.1H and 27Al magic angle spinning(MAS) nuclear magnetic resonance(NMR) spectra clearly demonstrated that the existing states of surface Al species in alkylaluminum-modified catalysts strongly depended on the type of alkylaluminum cocatalyst,concentration of alkylaluminum and the calcination temperature.1H MAS NMR spectra of alkylaluminum-modified Phillips CrOx/SiO2 catalysts,calcined at two different temperatures,exhibited similar trends in peak shift.1H spectra showed that with an increase of Al/Cr ratio and calcination temperature,the main peak shifted to high field,indicating that the dominant surface proton species changed from hydroxyl to ethoxyl and ethyl groups.27Al MAS NMR spectra showed the presence of three different coordination states(6-,5-,and 4-coordinated Al species) in the alkylaluminummodified Phillips catalysts.In comparison of different alkylaluminum cocatalysts,it was found that the reactivity of alkylaluminum modified Phillips catalyst decreased in the order of TEA〉DEAH〉DEAE.The amount of 4-coordinated Al species of Phillips catalysts modified by TEA,DEAE and DEAH also decreased in the order of TEA〉DEAH〉DEAE,indicating that the presence of 4-coordinated Al species is related to the polymerization activity.
基金financial supports from the National Natural Science Foundation of China (Nos. 21373035, 21673027 and 21603022)the Fundamental Research Funds for the Central Universities in China (Nos. DUT16RC(3)002 and DUT17TD04)
文摘CO2-based stereocomplexed polycarbonates derived from the intermolecularly interlocked interaction between the enantiopure polymers with the opposite configuration exhibit high crystallinity, excellent thermal and mechanical stabilities. Deep insights into the mechanism of stereocomplexation are of particular importance to the design and manufacture of new promising and sustainable polycarbonates with enhanced physicochemical properties. Our solid-state NMR experiments linking with DFT computations clearly reveal the specific chain-chain interactions in a typical stereocomplexed poly(4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0] octane carbonate)(PCXC).13C CP/MAS NMR,1H DUMBO MAS NMR and 13C/1H relaxation-time measurements indicate that the formation of stereocomplex reduces the local mobilities of carbonyl, methine and methylene groups in each chain of PCXC significantly. Through a combination of two-dimensional 1H-13C HETCOR NMR and DFT calculation analysis, the cis-/trans-conformations and packing models of PCXC chains in the amorphous, enantionpure isotactic and stereocomplexed polycarbonates are identified. The splitting of 13C and 1H NMR chemical shifts of methine groups in the backbone carbon region demonstrates the ordered interlock interactions between the R-and S-chain in the stereocomplexed PCXC.
文摘Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids, 2H solid-state NMR spectroscopy can be used to probe the effect of embedded proteins on the order and dynamics of the acyl chains of phospholipid bilayers [8-13]. Moreover, 31P solid-state NMR spectroscopy can be used to investigate the interaction of peptides, proteins and drugs with phospholipid head groups [11-14]. The secondary structure of 13C = O site-specific isotopically labeled peptides or proteins inserted into lipid bilayers can be probed utilizing 13C CPMAS solid-state NMR spectroscopy [15-18]. Also, solid-state NMR spectroscopic studies can be utilized to ascertain pertinent informa- tion on the backbone and side-chain dynamics of 2H- and 15N-labeled proteins, respectively, in phospholipid bilayers [19-26]. Finally, specific 15N-labeled amide sites on a protein embedded inside oriented bilayers can be used to probe the alignment of the helices with respect to the bilayer normal [2]. A brief summary of all these solid-state NMR ap- proaches are provided in this minireview.
文摘Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.
基金The project supported by National Natural Science Foundation of China.
文摘To raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a noncrystalline two-component epoxy electrolyte system has been prepared. The diglycidyl ether of polyethylene glycols as precursors of the system were synthesized by a two-step process. The presumed structure of the product was characterized, by ^(13)C, ~1H NMR and IR spectroscopy. It was found that a side-reaction occurred between the secondary hydroxyl group of PEG-chlorohydrin and epichlorohydrin in some degree, resulting in a by- product containing—CH_2Cl side group. By selecting a characteristic signal, which is undistorted by the increase in the length of CH_2 CH_2—O segment, a ~1H NMR approach of determining the equivalent epoxy weight (EEW) was proposed. The method is valid to specimens even though the EEW is as high as 2,000. The examination of the specimens by DSC showed that epoxidation greatly depressed the crystallinity of the PEG's, whereas the T_g was raised.
文摘An nanostructured thermoset blend of unsaturated polyester(UPR) and PEO-PPO-PEO triblock copolymer was prepared and characterized by solid-state NMR and other techniques.It is concluded that the blend is microphase separated and the determined long period is 20 nm.A distinct dynamic difference between the cured-UPR matrix and block copolymers was observed by 1D and 2D NMR experiments,the formation of PEO crystalline domains was inhibited in the blend.The PEO blocks are partially miscible with the cured-UPR matrix.Upon curing, part of the mobile PEO was locally expelled from the cured-UPR matrix and formed dispersed microphase together with the mobile PPO,the residual immobilized PEO blocks were intimately mixed with the partially cured-UPR, and they formed an interphase region.