A facile route for the synthesis of dimethyl adipate (DAP) from cyclopentanone and dimethyl carbonate (DMC) in the pres- ence of solid base catalysts has been developed. It was found that the intermediate carbomet...A facile route for the synthesis of dimethyl adipate (DAP) from cyclopentanone and dimethyl carbonate (DMC) in the pres- ence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclopentanone (CMCP) was produced from cyclopentanone with DMC in the first step, and then CMCP was further converted to DAP by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclopentanone via the abstraction of a proton in the a-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DAP.展开更多
Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can descri...Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1 000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350. 42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.展开更多
The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterifi...The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterification in the batch reactor gave the highest methyl ester yield of96.7%under optimum conditions,while a methyl ester content over 94.5%was obtained in the packed-bed reactor.This comparison indicates that transesterification in a batch-type reactor gives a higher methyl ester yield than that of a continuous-flow reactor.Dealumination was found in the calcined catalysts and had a significant effect on the physical structure and chemical composition of the catalysts.Leaching of the potassium species was negligible,whereas depositing and washing of the reacted mixture with acetone on the catalyst surface were observed by FTIR.展开更多
A rapid and environmentally friendly approach to synthesize hierarchical sodalite from natural aluminosilicate mineral without the involvement of any mesoporogen or post-synthesis treatment was developed.This strategy...A rapid and environmentally friendly approach to synthesize hierarchical sodalite from natural aluminosilicate mineral without the involvement of any mesoporogen or post-synthesis treatment was developed.This strategy involves three important steps:the first is the depolymerization of an aluminosilicate mineral into highly reactive silicon and aluminum species with ideal meso-scale structures through activation of a sub-molten salt.The second step is the hydrolysis and condensation of the activated aluminosilicate mineral into zeolitic precursors that also have a meso-scale structure.The third is the rapid zeolitization of the zeolitic precursors through the reversed crystal growth route at room temperature and ambient pressure to form hierarchical sodalite.The physicochemical properties of the as-synthesized sodalite were systematically characterized,and the formation mechanism of the hierarchical pore structure was discussed.When used as a solid base catalyst for Knoevenagel condensation,the as-synthesized sodalite and its potassium ion-exchanged product with hierarchical micro-meso-macroporous structure both exhibited high catalytic activity and product selectivity.展开更多
Four kinds of strontium borates were prepared and characterized by XRD, SEM, EDS, TG-DTA and Hammett titration method and their catalytic activities were examined in the transesterification of glyceryl tributyrate wit...Four kinds of strontium borates were prepared and characterized by XRD, SEM, EDS, TG-DTA and Hammett titration method and their catalytic activities were examined in the transesterification of glyceryl tributyrate with methanol for the first time. The separate effects of the molar ratio of methanol to oil, the reaction time, and reusability were investigated. In addition, the catalytic activities of Sr(OH)2 and SrCO3 were also examined for the comparison. The results showed that the basicity and catalytic activity of these catalysts were decreased as the following order: Sr(OH)2 〉 SrB2O4·4H2O 〉 SrB6O10·5H2O 〉 SrB2O4 〉 SrB6O10 〉 SrCO3, and the reusability decreases as the following order: anhydrous strontium borates (SrBgO4, SrB6O10) 〉 hydrated strontium borates (SrB2O4·4H2O, SrB6O10·5H2O) 〉 Sr(OH)〉 The results indicate that the SrB2O4·4H2O with regular morphology, which was obtained at low temperature by a simple preparation method, might be as one kind of good potential alkaline earth salts catalyst for transesterification. Moreover, the possible reaction mechanism is proposed and analyzed.展开更多
The preparation and regeneration conditions of the identified catalyst X/Y/MgO/?-Al2O3 with high catalytic activity were studied and optimized. The biodiesel was prepared by transesterification of Jatropha curcas see...The preparation and regeneration conditions of the identified catalyst X/Y/MgO/?-Al2O3 with high catalytic activity were studied and optimized. The biodiesel was prepared by transesterification of Jatropha curcas seed oil produced in Guizhou with methanol at its reflux temoerature in the presence of X/Y/MgO/?-Al2O3 . The pilot plant tests were carried out in a 100 L reaction vessel. Both average yield and fatty acid methyl esters (FAME) content reached more than 96.50% under the optimum reaction conditions of the pilot plant tests designed with an oil/methanol molar ratio of 1 : 10, catalyst concentration of 1.00%, and reaction time of 3 h at reflux temperature. In addition, analysis shows that the quality of biodiesel meets the standard EN 14214.展开更多
Solid strong base catalysts have received considerable attention in various organic reactions due to their facile separation,neglectable corrosion,and environmental friendliness.Although great progress has been made i...Solid strong base catalysts have received considerable attention in various organic reactions due to their facile separation,neglectable corrosion,and environmental friendliness.Although great progress has been made in the preparation of solid strong base catalysts,it is still challenging to avoid basic sites aggregation on support and active sites loss in reaction system.Here,we report a tandem redox strategy to prepare Na single atoms on graphene,producing a new kind of solid strong base catalyst(Na1/G).The base precursor NaNO_(3)was first reduced to Na2O by graphene(400℃)and successively to single atoms Na anchored on the graphene vacancies(800℃).Owing to the atomically dispersed of basicity,the resultant catalyst presents high activity toward the transesterification of methanol and ethylene carbonate to synthesize dimethyl carbonate(turnover frequency(TOF)value:125.7 h^(−1)),which is much better than the conventional counterpart Na2O/G and various reported solid strong bases(TOF:1.0-90.1 h^(−1)).Furthermore,thanks to the basicity anchored on graphene,the Na1/G catalyst shows excellent durability during cycling.This work may provide a new direction for the development of solid strong base catalysts.展开更多
Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achi...Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achieving the technical upgrades through catalyst design is desirable but challenging because of the difficulty in satisfying diverse demands of different steps.In this work,a magnetically responsive solid base catalyst with the rod-like nanostructure was developed.The rod-like solid base catalysts are composed of Fe_(3)O_(4) cores,silica shells and calcium oxide active sites.The functions of magnetic recovery and stirring were integrated into the catalyst,which applies in both the general catalytic processes and microchannel reactors given their nanoscales.When applied to the synthesis of dimethyl carbonate by onestep transesterification of methanol and ethylene carbonate,an apparent enhancement on turnover frequency value(33.1 h^(−1))was observed for nano-stirring compared with that tested without stirring(12.1 h^(−1))within 30 min.The present catalysts may open up new avenues in the development of advanced solid base catalysts.展开更多
One-pot synthesis of Mg containing MCM-41(Mg-MCM-41) materials was respectively carried out by a room temperature(RT) method and a hydrothermal(HT) method for aldol condensation of 4-nitrobenzaldehyde and acetone and ...One-pot synthesis of Mg containing MCM-41(Mg-MCM-41) materials was respectively carried out by a room temperature(RT) method and a hydrothermal(HT) method for aldol condensation of 4-nitrobenzaldehyde and acetone and self-condensation of acetone. The RT method can prepare MCM-41 materials containing large amounts of Mg while maintaining the structural characteristics of MCM-41 even at very low Si/Mg ratios(large Mg loadings), but the HT method cannot. The RT method can also give more active catalysts than the HT method, because the catalysts prepared by the RT method are more basic than those prepared by the HT one. The characterization indicates that Mg atoms in the Mg-MCM-41 prepared by the RT method exist as MgO disperses well on the wall surface of pores, while those in Mg-MCM-41 prepared by the HT method are included in the bulk with a smectite-like structure.展开更多
Magnesium and rare earth mixed oxides(Mg3 REOx(RE=La, Y. Ce)) were prepared and characterized by Xray diffraction(XRD), N_2 adsorption-desorption, infrared spectra and microcalorimetry of CO_2. The results revea...Magnesium and rare earth mixed oxides(Mg3 REOx(RE=La, Y. Ce)) were prepared and characterized by Xray diffraction(XRD), N_2 adsorption-desorption, infrared spectra and microcalorimetry of CO_2. The results reveal that the Mg_3 CeO_x catalyst is present in the form of Mg-Ce-O solid solution,while the Mg3 LaOx and Mg_3 YO_x catalysts are probably rare earth oxides dispersed on MgO surface. As a result, among the calcined Mg_3 REO_x catalysts, the Mg_3 CeO_x catalyst presents the highest rate constant for acetone aldolization, which is well correlated to its more homogeneous distribution of basic sites. In contrary, the Mg_3 YO_x catalyst exhibit the lowest catalytic activity for acetone aldolization. Upon hydration pre-treatment, the basic properties on the surface of the Mg_3 REO_x catalysts were changed markedly. The Mg_3 YO_x catalyst after hydration treatment shows the highest amount of basic sites on catalyst surface, and then exhibits the highest activity among the hydrated Mg_3 REO_x catalysts. These results make it possible to fine-tune basic sites for acetone aldolization.展开更多
基金supported by the Zhangjiang Science and Technology Development Foundation of Guangdong,China (2009C3101015)Doctoral Starting Foundation of Guangdong Medical College (XB0811)
文摘A facile route for the synthesis of dimethyl adipate (DAP) from cyclopentanone and dimethyl carbonate (DMC) in the pres- ence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclopentanone (CMCP) was produced from cyclopentanone with DMC in the first step, and then CMCP was further converted to DAP by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclopentanone via the abstraction of a proton in the a-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DAP.
基金The National Basic Research Program of China(973Program)(No.2010CB732206)the National Natural Science Foundation of China(No.21076044,21276050)
文摘Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1 000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350. 42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.
基金supported financially by the National Metal and Materials Technology Center,Thailandthe Center of Excellence on Petrochemical and Materials Technology,Thailand
文摘The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterification in the batch reactor gave the highest methyl ester yield of96.7%under optimum conditions,while a methyl ester content over 94.5%was obtained in the packed-bed reactor.This comparison indicates that transesterification in a batch-type reactor gives a higher methyl ester yield than that of a continuous-flow reactor.Dealumination was found in the calcined catalysts and had a significant effect on the physical structure and chemical composition of the catalysts.Leaching of the potassium species was negligible,whereas depositing and washing of the reacted mixture with acetone on the catalyst surface were observed by FTIR.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(grant Nos.91434206,21506034,and 21276270).
文摘A rapid and environmentally friendly approach to synthesize hierarchical sodalite from natural aluminosilicate mineral without the involvement of any mesoporogen or post-synthesis treatment was developed.This strategy involves three important steps:the first is the depolymerization of an aluminosilicate mineral into highly reactive silicon and aluminum species with ideal meso-scale structures through activation of a sub-molten salt.The second step is the hydrolysis and condensation of the activated aluminosilicate mineral into zeolitic precursors that also have a meso-scale structure.The third is the rapid zeolitization of the zeolitic precursors through the reversed crystal growth route at room temperature and ambient pressure to form hierarchical sodalite.The physicochemical properties of the as-synthesized sodalite were systematically characterized,and the formation mechanism of the hierarchical pore structure was discussed.When used as a solid base catalyst for Knoevenagel condensation,the as-synthesized sodalite and its potassium ion-exchanged product with hierarchical micro-meso-macroporous structure both exhibited high catalytic activity and product selectivity.
基金supported by the National Natural Science Foundation of China(21173143)
文摘Four kinds of strontium borates were prepared and characterized by XRD, SEM, EDS, TG-DTA and Hammett titration method and their catalytic activities were examined in the transesterification of glyceryl tributyrate with methanol for the first time. The separate effects of the molar ratio of methanol to oil, the reaction time, and reusability were investigated. In addition, the catalytic activities of Sr(OH)2 and SrCO3 were also examined for the comparison. The results showed that the basicity and catalytic activity of these catalysts were decreased as the following order: Sr(OH)2 〉 SrB2O4·4H2O 〉 SrB6O10·5H2O 〉 SrB2O4 〉 SrB6O10 〉 SrCO3, and the reusability decreases as the following order: anhydrous strontium borates (SrBgO4, SrB6O10) 〉 hydrated strontium borates (SrB2O4·4H2O, SrB6O10·5H2O) 〉 Sr(OH)〉 The results indicate that the SrB2O4·4H2O with regular morphology, which was obtained at low temperature by a simple preparation method, might be as one kind of good potential alkaline earth salts catalyst for transesterification. Moreover, the possible reaction mechanism is proposed and analyzed.
基金supported by the Key Science and Technology Project of Guizhou(No.20076004).
文摘The preparation and regeneration conditions of the identified catalyst X/Y/MgO/?-Al2O3 with high catalytic activity were studied and optimized. The biodiesel was prepared by transesterification of Jatropha curcas seed oil produced in Guizhou with methanol at its reflux temoerature in the presence of X/Y/MgO/?-Al2O3 . The pilot plant tests were carried out in a 100 L reaction vessel. Both average yield and fatty acid methyl esters (FAME) content reached more than 96.50% under the optimum reaction conditions of the pilot plant tests designed with an oil/methanol molar ratio of 1 : 10, catalyst concentration of 1.00%, and reaction time of 3 h at reflux temperature. In addition, analysis shows that the quality of biodiesel meets the standard EN 14214.
基金the National Science Fund for Distinguished Young Scholars(No.22125804)the National Natural Science Foundation of China(Nos.22078155 and 22178163)the Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Solid strong base catalysts have received considerable attention in various organic reactions due to their facile separation,neglectable corrosion,and environmental friendliness.Although great progress has been made in the preparation of solid strong base catalysts,it is still challenging to avoid basic sites aggregation on support and active sites loss in reaction system.Here,we report a tandem redox strategy to prepare Na single atoms on graphene,producing a new kind of solid strong base catalyst(Na1/G).The base precursor NaNO_(3)was first reduced to Na2O by graphene(400℃)and successively to single atoms Na anchored on the graphene vacancies(800℃).Owing to the atomically dispersed of basicity,the resultant catalyst presents high activity toward the transesterification of methanol and ethylene carbonate to synthesize dimethyl carbonate(turnover frequency(TOF)value:125.7 h^(−1)),which is much better than the conventional counterpart Na2O/G and various reported solid strong bases(TOF:1.0-90.1 h^(−1)).Furthermore,thanks to the basicity anchored on graphene,the Na1/G catalyst shows excellent durability during cycling.This work may provide a new direction for the development of solid strong base catalysts.
基金supported by the National Natural Science Foundation of China Youth Project(21808110)the financial support of this work by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21878149,22078155,and 21722606)。
文摘Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achieving the technical upgrades through catalyst design is desirable but challenging because of the difficulty in satisfying diverse demands of different steps.In this work,a magnetically responsive solid base catalyst with the rod-like nanostructure was developed.The rod-like solid base catalysts are composed of Fe_(3)O_(4) cores,silica shells and calcium oxide active sites.The functions of magnetic recovery and stirring were integrated into the catalyst,which applies in both the general catalytic processes and microchannel reactors given their nanoscales.When applied to the synthesis of dimethyl carbonate by onestep transesterification of methanol and ethylene carbonate,an apparent enhancement on turnover frequency value(33.1 h^(−1))was observed for nano-stirring compared with that tested without stirring(12.1 h^(−1))within 30 min.The present catalysts may open up new avenues in the development of advanced solid base catalysts.
文摘One-pot synthesis of Mg containing MCM-41(Mg-MCM-41) materials was respectively carried out by a room temperature(RT) method and a hydrothermal(HT) method for aldol condensation of 4-nitrobenzaldehyde and acetone and self-condensation of acetone. The RT method can prepare MCM-41 materials containing large amounts of Mg while maintaining the structural characteristics of MCM-41 even at very low Si/Mg ratios(large Mg loadings), but the HT method cannot. The RT method can also give more active catalysts than the HT method, because the catalysts prepared by the RT method are more basic than those prepared by the HT one. The characterization indicates that Mg atoms in the Mg-MCM-41 prepared by the RT method exist as MgO disperses well on the wall surface of pores, while those in Mg-MCM-41 prepared by the HT method are included in the bulk with a smectite-like structure.
基金Project supported by National Basic Research Program of China(2010CB732300)111 Project(B08021)China Scholarship Council for the Joint-Training Scholarship Program with Institut de Recherches sur la Catalyse et l'Environnement de Lyon(IRCELYON)and Universite Claude Bernard Lyon 1(UCBL1)
文摘Magnesium and rare earth mixed oxides(Mg3 REOx(RE=La, Y. Ce)) were prepared and characterized by Xray diffraction(XRD), N_2 adsorption-desorption, infrared spectra and microcalorimetry of CO_2. The results reveal that the Mg_3 CeO_x catalyst is present in the form of Mg-Ce-O solid solution,while the Mg3 LaOx and Mg_3 YO_x catalysts are probably rare earth oxides dispersed on MgO surface. As a result, among the calcined Mg_3 REO_x catalysts, the Mg_3 CeO_x catalyst presents the highest rate constant for acetone aldolization, which is well correlated to its more homogeneous distribution of basic sites. In contrary, the Mg_3 YO_x catalyst exhibit the lowest catalytic activity for acetone aldolization. Upon hydration pre-treatment, the basic properties on the surface of the Mg_3 REO_x catalysts were changed markedly. The Mg_3 YO_x catalyst after hydration treatment shows the highest amount of basic sites on catalyst surface, and then exhibits the highest activity among the hydrated Mg_3 REO_x catalysts. These results make it possible to fine-tune basic sites for acetone aldolization.