The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of soli...The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.展开更多
The amounts of rare earth in the solid solution in steel 16Mn were determined by means of inductive coupling plasma(ICP)spectroscopy.While the RE/S ratio was less than 1.9,the amounts of rare earth in solid solution w...The amounts of rare earth in the solid solution in steel 16Mn were determined by means of inductive coupling plasma(ICP)spectroscopy.While the RE/S ratio was less than 1.9,the amounts of rare earth in solid solution were not more than 8 ppm,which rised slightly with the increase of the rare earth content in the steel.While the RE/S was more than 1.9,MnS disappeared completely in the steel and the amounts of rare earth in solid solution increased rapidly with the increasing of the rare earth content.The solubility of cerium in steel 16 Mn(St 52)is less than 0.011 wt% at room temperature.The results also indicate that rare earth in solid solution can reduce the amount of pearlite and increase that of ferrite and its mierohardness.The rela- tionship between microhardness(Hv)and the amount of rare earth in solid solution can be expressed by the equation of Hv=117+7 RE(ppm).展开更多
In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation e...In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation equipments. For the construction of an extra-large section chamber in the Tangshan mine, we proposed an active support through a combination of bolting, anchor cables, lining, and a reinforced chamber floor by inverted arch pouring. ABAQUS software was used to analyze the surrounding rock deformation and the plastic zone development of the chamber under different excavation schemes.The best excavation scheme was determined, and the effectiveness of the combined supports was verified. In practice, the engineering installation showed good overall control of the movement of the surrounding rock, with roof-to-floor and side-to-side convergences of 154.6 and 77.5 mm, respectively,which meets the requirements for underground coal gangue separation.展开更多
Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase tr...Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase transformation and hyperfine interactions has been investigated by Mossbauer spectroscopy, X-ray diffraction (XRD), differential thermal analysis and thermogravimetry (DTA-TG), transmission electron microscopy (TEM), oxygen determination and vibrating sample magnetometer (VSM) measurements. It was observed that phase transformation of γ-Fe to α-Fe occurs during annealing in vacuum. The mechanism causing the change of hyperfine interactions with annealing temperature differs for Fe-C solution and interstitial compounds. DifFerence of hyperfine interactions of Fe-C solid solution in the starting sample and its annealed samples is ascribed to the improvement of activation of interstitial carbon atoms. Stress-relieving in structure of annealed Fe3C particle can result in a weak influence on hyperfine interactions. Parameters fitted to the Mossbauer spectra show the existence of superparamagnetism in all the samples. Absorbed and combined oxygen on particle surface of the starting sample were determined.展开更多
The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active...The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active sites but also by the properties of the interfacial structures at catalytic surfaces. Ionic liquids(ILs), as a unique class of metal salts with melting point below 100 ℃, present themselves as ideal modulators for manipulations of the interfacial structures. Due to their excellent properties such as good chemical stability, high ionic conductivity, wide electrochemical windows and tunable solvent properties the performance of electrocatalysts can be substantially improved through ILs. In the current minireview, we highlight the critical role of the IL phase at the microenvironments created by the IL, the liquid electrolyte, catalytic nanoparticles and/or support materials, by detailing the promotional effect of IL in electrocatalysis as reaction media, binders, and surface modifiers. Updated exemplary applications of IL in electrocatalysis are given and moreover, the latest developments of IL modified electrocatalysts following the "Solid Catalyst with Ionic Liquid Layer(SCILL)" concept are presented.展开更多
The diffusion,viscosity and thermal conductivity coefficients of gases between two parallel solid walls have been obtained analytically based on the Green-Kubo relation under a hard-sphere model.They decrease nonlinea...The diffusion,viscosity and thermal conductivity coefficients of gases between two parallel solid walls have been obtained analytically based on the Green-Kubo relation under a hard-sphere model.They decrease nonlinearly as the Knudsen number defined as the ratio of the mean free path to the wall distance increases.This theoretical prediction was in good agreement by the DSMC results.展开更多
In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phas...In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phase change and energy loss on reflection. It is shown that the homogeneous acoustic field, which comprises the complex effective depth approximation,closely reproduces the character of low modes at small grazing angles, and calculates effectively the acoustic field at longer ranges in shallow water. Application of the complex effective depth approximation can be extended to bottoms having two soft solid layers.展开更多
There exist big gaps between measurements and modeling predictions on solids holdup and pressure drop in dense solids transport, such as those occuring in the bottom sections of gas-solids risers. The inability of clo...There exist big gaps between measurements and modeling predictions on solids holdup and pressure drop in dense solids transport, such as those occuring in the bottom sections of gas-solids risers. The inability of closing this gap by common modeling approaches indicates certain missing and/or misrepresentation of some controlling mechanisms in modeling the transport. Previous research efforts show that the gap can not be effectively narrowed by simply modifying the drag force formulations without inclusion of the collision effect. This paper explores the origin of some controlling mechanisms that might have been overlooked in previous modeling approaches, and recommends how to make the model dense solids transport better. Our analysis shows the presence of a resistant force arising from inter-particle collision when the solids are accelerated in dense-phase transport. This may be caused by non-equilibrium collision during solids acceleration, which differs from local-equilibrium assumptions on which the current kinetic theory modeling of granular particles is based. A complete modeling of this collision-induced resistance calls for a total revision of the kinetic theory, with the inclusion of non-equilibrium collisions and offcenter collisions in dense solids transport.展开更多
SiC_(f)/SiBCZr composites were prepared by polymer precursor impregnation and pyrolysis process with near stoichiometric ratio SiC fiber preform as reinforcement phase and SiBCZr multiphase ceramic precursor as impreg...SiC_(f)/SiBCZr composites were prepared by polymer precursor impregnation and pyrolysis process with near stoichiometric ratio SiC fiber preform as reinforcement phase and SiBCZr multiphase ceramic precursor as impregnating reagent.The results highlighted that the SiC_(f)/SiBCZr composites exhibited excellent ablative properties after ablative tests at 1200℃/3600 s and 1400℃/3600 s,and the strength retention rates of the composites reached 90%and 85%,respectively.This was mainly due to the liquid sealing effect of the ablative products represented by B2O_(3) and SiO_(2)∙B_(2)O_(3),which inhibited the ablative reaction by reducing the diffusion rate of the oxidation medium,and the solid pinning effect of the substances represented by SiO_(2),ZrO_(2),and ZrSiO_(4),which could play high viscosity and high strength characteristics to improve anti-erosion ability.The above-mentioned SiC_(f)/SiBCZr composites with corrosion resistance,oxidation resistance,and ablative resistance provided a solid material foundation and technical support for the development of reusable spacecraft hot-end components.展开更多
This work provides an approach to determine the efficiency of T-ray detectors with a good accuracy in order to determine the concentrations of either naturally occurring or artificially prepared radionuclides. This ap...This work provides an approach to determine the efficiency of T-ray detectors with a good accuracy in order to determine the concentrations of either naturally occurring or artificially prepared radionuclides. This approach is based on the efficiency transfer formula (ET), the effective solid angles, the self- absorptions of the source matrix, the attenuation by the source container and the detector housing materials on the detector efficiency. The experimental calibration process was done using radioactive (Cylindrical & Marinelli) sources, in different dimensions, that contain aqueous 152Eu radionuclide. The comparison point to a fine agreement between the experimental measured and calculated efficiencies for the (NaI & HPGe) detectors using volumetric radioactive sources.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51305080
文摘The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.
文摘The amounts of rare earth in the solid solution in steel 16Mn were determined by means of inductive coupling plasma(ICP)spectroscopy.While the RE/S ratio was less than 1.9,the amounts of rare earth in solid solution were not more than 8 ppm,which rised slightly with the increase of the rare earth content in the steel.While the RE/S was more than 1.9,MnS disappeared completely in the steel and the amounts of rare earth in solid solution increased rapidly with the increasing of the rare earth content.The solubility of cerium in steel 16 Mn(St 52)is less than 0.011 wt% at room temperature.The results also indicate that rare earth in solid solution can reduce the amount of pearlite and increase that of ferrite and its mierohardness.The rela- tionship between microhardness(Hv)and the amount of rare earth in solid solution can be expressed by the equation of Hv=117+7 RE(ppm).
基金supported by the National Natural Science Foundation of China (No. 51304206)the Project of National Scientific and Technical Supporting Programs Foundation of China (No. 2012BAB13B03)the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0728)
文摘In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation equipments. For the construction of an extra-large section chamber in the Tangshan mine, we proposed an active support through a combination of bolting, anchor cables, lining, and a reinforced chamber floor by inverted arch pouring. ABAQUS software was used to analyze the surrounding rock deformation and the plastic zone development of the chamber under different excavation schemes.The best excavation scheme was determined, and the effectiveness of the combined supports was verified. In practice, the engineering installation showed good overall control of the movement of the surrounding rock, with roof-to-floor and side-to-side convergences of 154.6 and 77.5 mm, respectively,which meets the requirements for underground coal gangue separation.
文摘Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase transformation and hyperfine interactions has been investigated by Mossbauer spectroscopy, X-ray diffraction (XRD), differential thermal analysis and thermogravimetry (DTA-TG), transmission electron microscopy (TEM), oxygen determination and vibrating sample magnetometer (VSM) measurements. It was observed that phase transformation of γ-Fe to α-Fe occurs during annealing in vacuum. The mechanism causing the change of hyperfine interactions with annealing temperature differs for Fe-C solution and interstitial compounds. DifFerence of hyperfine interactions of Fe-C solid solution in the starting sample and its annealed samples is ascribed to the improvement of activation of interstitial carbon atoms. Stress-relieving in structure of annealed Fe3C particle can result in a weak influence on hyperfine interactions. Parameters fitted to the Mossbauer spectra show the existence of superparamagnetism in all the samples. Absorbed and combined oxygen on particle surface of the starting sample were determined.
基金supported by the funding of the German Research Council (DFG), which, within the framework of its Excellence Initiative, supports the Cluster of Excellence “Engineering of Advanced Materials” (www.eam.uni-erlangen.de) at the University of Erlangen-Nürnberg
文摘The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active sites but also by the properties of the interfacial structures at catalytic surfaces. Ionic liquids(ILs), as a unique class of metal salts with melting point below 100 ℃, present themselves as ideal modulators for manipulations of the interfacial structures. Due to their excellent properties such as good chemical stability, high ionic conductivity, wide electrochemical windows and tunable solvent properties the performance of electrocatalysts can be substantially improved through ILs. In the current minireview, we highlight the critical role of the IL phase at the microenvironments created by the IL, the liquid electrolyte, catalytic nanoparticles and/or support materials, by detailing the promotional effect of IL in electrocatalysis as reaction media, binders, and surface modifiers. Updated exemplary applications of IL in electrocatalysis are given and moreover, the latest developments of IL modified electrocatalysts following the "Solid Catalyst with Ionic Liquid Layer(SCILL)" concept are presented.
基金supported by the National Natural Science Foundation of China (Grant No.10921062)
文摘The diffusion,viscosity and thermal conductivity coefficients of gases between two parallel solid walls have been obtained analytically based on the Green-Kubo relation under a hard-sphere model.They decrease nonlinearly as the Knudsen number defined as the ratio of the mean free path to the wall distance increases.This theoretical prediction was in good agreement by the DSMC results.
文摘In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phase change and energy loss on reflection. It is shown that the homogeneous acoustic field, which comprises the complex effective depth approximation,closely reproduces the character of low modes at small grazing angles, and calculates effectively the acoustic field at longer ranges in shallow water. Application of the complex effective depth approximation can be extended to bottoms having two soft solid layers.
文摘There exist big gaps between measurements and modeling predictions on solids holdup and pressure drop in dense solids transport, such as those occuring in the bottom sections of gas-solids risers. The inability of closing this gap by common modeling approaches indicates certain missing and/or misrepresentation of some controlling mechanisms in modeling the transport. Previous research efforts show that the gap can not be effectively narrowed by simply modifying the drag force formulations without inclusion of the collision effect. This paper explores the origin of some controlling mechanisms that might have been overlooked in previous modeling approaches, and recommends how to make the model dense solids transport better. Our analysis shows the presence of a resistant force arising from inter-particle collision when the solids are accelerated in dense-phase transport. This may be caused by non-equilibrium collision during solids acceleration, which differs from local-equilibrium assumptions on which the current kinetic theory modeling of granular particles is based. A complete modeling of this collision-induced resistance calls for a total revision of the kinetic theory, with the inclusion of non-equilibrium collisions and offcenter collisions in dense solids transport.
文摘SiC_(f)/SiBCZr composites were prepared by polymer precursor impregnation and pyrolysis process with near stoichiometric ratio SiC fiber preform as reinforcement phase and SiBCZr multiphase ceramic precursor as impregnating reagent.The results highlighted that the SiC_(f)/SiBCZr composites exhibited excellent ablative properties after ablative tests at 1200℃/3600 s and 1400℃/3600 s,and the strength retention rates of the composites reached 90%and 85%,respectively.This was mainly due to the liquid sealing effect of the ablative products represented by B2O_(3) and SiO_(2)∙B_(2)O_(3),which inhibited the ablative reaction by reducing the diffusion rate of the oxidation medium,and the solid pinning effect of the substances represented by SiO_(2),ZrO_(2),and ZrSiO_(4),which could play high viscosity and high strength characteristics to improve anti-erosion ability.The above-mentioned SiC_(f)/SiBCZr composites with corrosion resistance,oxidation resistance,and ablative resistance provided a solid material foundation and technical support for the development of reusable spacecraft hot-end components.
文摘This work provides an approach to determine the efficiency of T-ray detectors with a good accuracy in order to determine the concentrations of either naturally occurring or artificially prepared radionuclides. This approach is based on the efficiency transfer formula (ET), the effective solid angles, the self- absorptions of the source matrix, the attenuation by the source container and the detector housing materials on the detector efficiency. The experimental calibration process was done using radioactive (Cylindrical & Marinelli) sources, in different dimensions, that contain aqueous 152Eu radionuclide. The comparison point to a fine agreement between the experimental measured and calculated efficiencies for the (NaI & HPGe) detectors using volumetric radioactive sources.