The present study was conducted with an aim to scale up the production of iturin A using soybean curd residue (okara). Iturin A was produced by indigenous bacterial strain Bacillus subtilis RB14-CS through glass colum...The present study was conducted with an aim to scale up the production of iturin A using soybean curd residue (okara). Iturin A was produced by indigenous bacterial strain Bacillus subtilis RB14-CS through glass column reactor (GCR) under solid state fermentation (SSF) was characterized. The enhanced iturin A production was observed with respect to enhanced substrate bed height when SSF was conducted in Erlenmeyer flask. To check the effect of substrate bed height on iturin A production under SSF of okara, GCR was introduced. Substrate bed height of 15 cm was suitable for iturin A production which was about 2700 mg/kg wet substrate. The observed iturin A production by the aerobic bacteria Bacillus subtilis in nearly anaerobic condition in such high substrate bed for SSF is a wonderful finding for development of SSF system in future.展开更多
文摘The present study was conducted with an aim to scale up the production of iturin A using soybean curd residue (okara). Iturin A was produced by indigenous bacterial strain Bacillus subtilis RB14-CS through glass column reactor (GCR) under solid state fermentation (SSF) was characterized. The enhanced iturin A production was observed with respect to enhanced substrate bed height when SSF was conducted in Erlenmeyer flask. To check the effect of substrate bed height on iturin A production under SSF of okara, GCR was introduced. Substrate bed height of 15 cm was suitable for iturin A production which was about 2700 mg/kg wet substrate. The observed iturin A production by the aerobic bacteria Bacillus subtilis in nearly anaerobic condition in such high substrate bed for SSF is a wonderful finding for development of SSF system in future.