Tribological behavior of TiAl-multilayer graphene-Ag composites (TMACs) prepared by spark plasma sin- tering against a Si3N4 ball was investigated on a ball-on-disk high-temperature tribometer at different test temp...Tribological behavior of TiAl-multilayer graphene-Ag composites (TMACs) prepared by spark plasma sin- tering against a Si3N4 ball was investigated on a ball-on-disk high-temperature tribometer at different test temperatures and sliding speeds in this study. The test results showed that TMACs had the lower friction coefficient and less wear rate at 450 ℃-0.25 m/s, which was attributed to the formation of the high-strength and intact tribofilms on worn surface. At 450 ℃-0.25 m/s, during the sliding process, multilayer graphene (MLG) was ground out to form the high-strength skeletons on the wom surface of TMACs. Ag was migrated from the worn surface and combined with the MLG skeleton to form the high-strength and intact tribofilms. The high-strength and intact tribofilms were beneficial to lowering the friction coefficient for the lubricating effect of Ag and decreasing wear rate for the enhancing effect of MLG skeleton.展开更多
基金supported by the National Natural Science Foundation of China(51275370)Self-determined and Innovative Research Funds of WUT(135204008)the Fundamental Research Funds for the Central Universities(2016-YB-017 and 2016-zy-014)
文摘Tribological behavior of TiAl-multilayer graphene-Ag composites (TMACs) prepared by spark plasma sin- tering against a Si3N4 ball was investigated on a ball-on-disk high-temperature tribometer at different test temperatures and sliding speeds in this study. The test results showed that TMACs had the lower friction coefficient and less wear rate at 450 ℃-0.25 m/s, which was attributed to the formation of the high-strength and intact tribofilms on worn surface. At 450 ℃-0.25 m/s, during the sliding process, multilayer graphene (MLG) was ground out to form the high-strength skeletons on the wom surface of TMACs. Ag was migrated from the worn surface and combined with the MLG skeleton to form the high-strength and intact tribofilms. The high-strength and intact tribofilms were beneficial to lowering the friction coefficient for the lubricating effect of Ag and decreasing wear rate for the enhancing effect of MLG skeleton.