This paper studies the force network properties of marginally and deeply jammed packings of frictionless soft particlesfrom the perspective of complex network theory. We generate zero-temperature granular packings at ...This paper studies the force network properties of marginally and deeply jammed packings of frictionless soft particlesfrom the perspective of complex network theory. We generate zero-temperature granular packings at different pressures by minimizing the inter-particle potential energy. The force networks are constructed as nodes representing particles and links representing normal forces between the particles. Deeply jammed solids show remarkably different behavior from marginally jammed solids in their degree distribution, strength distribution, degree correlation, and clustering coefficient. Bimodal and multi-modal distributions emerge when the system enters the deep jamming region. The results also show that small and large particles can show different correlation behavior in this simple system.展开更多
Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, te...Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, temperature of liquid aluminium, temperture of tools and pressure on thickness of the intermetallic layer at the interface between steel and aluminium under solid-liquid pressure bonding of steel and aluminium perfectly. The optimum thickness has been determined according to the value of the optimum shearing strength.展开更多
Two layer BP neural network was designed for the semi solid apparent viscosity simulation. The apparent viscosity simulations of Sn 15%Pb alloy and Al 4.5%Cu 1.5%Mg alloy stirred slurries were carried out. The trained...Two layer BP neural network was designed for the semi solid apparent viscosity simulation. The apparent viscosity simulations of Sn 15%Pb alloy and Al 4.5%Cu 1.5%Mg alloy stirred slurries were carried out. The trained BP neural network forecast the curve of the apparent viscosity versus solid volume fraction of Sn 15%Pb alloy, under the condition of shear rate, =150 s -1 , and cooling rate of G =0.33 ℃/min. The simulation results are well agreement with the experimental values given in references. The fitted mathematical formula of Sn 15%Pb alloy apparent viscosity, under the condition of the cooling rate of G =0.33 ℃/min, was obtained by optimization method. The results show that the precision of apparent viscosity simulation value by neural network is much better than that of its calculation value by fitted mathematical formula.展开更多
To raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a noncrystalline two-component epoxy electrolyte system has been prepared. The diglycidyl ether ...To raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a noncrystalline two-component epoxy electrolyte system has been prepared. The diglycidyl ether of polyethylene glycols as precursors of the system were synthesized by a two-step process. The presumed structure of the product was characterized, by ^(13)C, ~1H NMR and IR spectroscopy. It was found that a side-reaction occurred between the secondary hydroxyl group of PEG-chlorohydrin and epichlorohydrin in some degree, resulting in a by- product containing—CH_2Cl side group. By selecting a characteristic signal, which is undistorted by the increase in the length of CH_2 CH_2—O segment, a ~1H NMR approach of determining the equivalent epoxy weight (EEW) was proposed. The method is valid to specimens even though the EEW is as high as 2,000. The examination of the specimens by DSC showed that epoxidation greatly depressed the crystallinity of the PEG's, whereas the T_g was raised.展开更多
针对分布式电源并网引起的双向潮流导致网损增大以及分布式电源、负荷的波动导致节点电压波动等问题,文章基于固态变压器(Solid State Transformer,SST)两侧电力电子变换器的脉冲宽度调制技术,提出了一种控制潮流的方法。该方法首先建...针对分布式电源并网引起的双向潮流导致网损增大以及分布式电源、负荷的波动导致节点电压波动等问题,文章基于固态变压器(Solid State Transformer,SST)两侧电力电子变换器的脉冲宽度调制技术,提出了一种控制潮流的方法。该方法首先建立了含SST的有源配电网动态无功优化模型;然后以多时刻的有功网损和电压波动为优化目标,采用改进多目标粒子群算法对SST的一、二次侧的电力电子变换器的调制角和调制系数等多个控制变量进行求解;最后建立仿真模型并与基于有载调压变压器的有源配电网动态无功优化方法进行比较。结果证明了所提方法在降低配电网网损和维持节点电压稳定方面的优越性。展开更多
The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano...The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11034010)
文摘This paper studies the force network properties of marginally and deeply jammed packings of frictionless soft particlesfrom the perspective of complex network theory. We generate zero-temperature granular packings at different pressures by minimizing the inter-particle potential energy. The force networks are constructed as nodes representing particles and links representing normal forces between the particles. Deeply jammed solids show remarkably different behavior from marginally jammed solids in their degree distribution, strength distribution, degree correlation, and clustering coefficient. Bimodal and multi-modal distributions emerge when the system enters the deep jamming region. The results also show that small and large particles can show different correlation behavior in this simple system.
文摘Artificial neural networks (ANN), being a sophisticated type of information processing system by imitating the neural system of human brain, can be used to investigate the effects of concentration of flux solution, temperature of liquid aluminium, temperture of tools and pressure on thickness of the intermetallic layer at the interface between steel and aluminium under solid-liquid pressure bonding of steel and aluminium perfectly. The optimum thickness has been determined according to the value of the optimum shearing strength.
文摘Two layer BP neural network was designed for the semi solid apparent viscosity simulation. The apparent viscosity simulations of Sn 15%Pb alloy and Al 4.5%Cu 1.5%Mg alloy stirred slurries were carried out. The trained BP neural network forecast the curve of the apparent viscosity versus solid volume fraction of Sn 15%Pb alloy, under the condition of shear rate, =150 s -1 , and cooling rate of G =0.33 ℃/min. The simulation results are well agreement with the experimental values given in references. The fitted mathematical formula of Sn 15%Pb alloy apparent viscosity, under the condition of the cooling rate of G =0.33 ℃/min, was obtained by optimization method. The results show that the precision of apparent viscosity simulation value by neural network is much better than that of its calculation value by fitted mathematical formula.
基金The project supported by National Natural Science Foundation of China.
文摘To raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a noncrystalline two-component epoxy electrolyte system has been prepared. The diglycidyl ether of polyethylene glycols as precursors of the system were synthesized by a two-step process. The presumed structure of the product was characterized, by ^(13)C, ~1H NMR and IR spectroscopy. It was found that a side-reaction occurred between the secondary hydroxyl group of PEG-chlorohydrin and epichlorohydrin in some degree, resulting in a by- product containing—CH_2Cl side group. By selecting a characteristic signal, which is undistorted by the increase in the length of CH_2 CH_2—O segment, a ~1H NMR approach of determining the equivalent epoxy weight (EEW) was proposed. The method is valid to specimens even though the EEW is as high as 2,000. The examination of the specimens by DSC showed that epoxidation greatly depressed the crystallinity of the PEG's, whereas the T_g was raised.
文摘针对分布式电源并网引起的双向潮流导致网损增大以及分布式电源、负荷的波动导致节点电压波动等问题,文章基于固态变压器(Solid State Transformer,SST)两侧电力电子变换器的脉冲宽度调制技术,提出了一种控制潮流的方法。该方法首先建立了含SST的有源配电网动态无功优化模型;然后以多时刻的有功网损和电压波动为优化目标,采用改进多目标粒子群算法对SST的一、二次侧的电力电子变换器的调制角和调制系数等多个控制变量进行求解;最后建立仿真模型并与基于有载调压变压器的有源配电网动态无功优化方法进行比较。结果证明了所提方法在降低配电网网损和维持节点电压稳定方面的优越性。
基金supported by the Western-Caucasus Research Center
文摘The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.