Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scal...Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts.展开更多
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st...The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_...To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs.展开更多
Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop...Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.展开更多
Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode ...Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode activity and stability is a tricky problem to be addressed for SOECs.Hence,it is urgent to develop suitable cathode materials with excellent catalytic activity and stability for further practical application of SOECs.Herein,a reduced perovskite oxide,Pr_(0.35)Sr_(0.6)Fe_(0.7)Cu_(0.2)Mo_(0.1)O_(3-δ)(PSFCM0.35),is developed as SOECs cathode to electrolyze CO_(2).After reduction in 10%H_(2)/Ar,Cu and Fe nanoparticles are exsolved from the PSFCM0.35 lattice,resulting in a phase transformation from cubic perovskite to Ruddlesden-Popper(RP)perovskite with more oxygen vacancies.The exsolved metal nanoparticles are tightly attached to the perovskite substrate and afford more active sites to accelerate CO_(2)adsorption and dissociation on the cathode surface.The significantly strengthened CO_(2)adsorption capacity obtained after reduction is demonstrated by in situ Fourier transform-infrared(FT-IR)spectra.Symmetric cells with the reduced PSFCM0.35(R-PSFCM0.35)electrode exhibit a low polarization resistance of 0.43Ωcm^(2)at 850℃.Single electrolysis cells with the R-PSFCM0.35 cathode display an outstanding current density of 2947 mA cm^(-2)at 850℃and 1.6 V.In addition,the catalytic stability of the R-PSFCM0.35 cathode is also proved by operating at 800℃with an applied constant current density of 600 mA cm^(-2)for 100 h.展开更多
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b...For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening.展开更多
A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide ...A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.展开更多
Solid oxide fuel cell(SOFC) technology and its status and problems were briefly described.Several topics for furtherresearch and development were proposed.
We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to ge...We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.展开更多
A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate t...A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.展开更多
The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel ce...The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.展开更多
Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exp...Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exploring efficient catalyst for electrochemical CO2 reduction reaction(CO2 RR) at the cathode is a grand challenge for the research and development of SOEC. Sr2Fe1.5Mo0.5O6-δ(SFM) is one kind of promising cathode materials for SOEC, but suffers from insufficient activity for CO2 RR. Herein, Gd0.2Ce0.8O1.9(GDC)nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO2 RR performance in SOEC. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A cm-2 at 1.6 V and 800 °C, which is much higher than that over the SFM cathode(0.283 A cm-2). Temperature-programmed desorption of CO2 measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface active sites and three phase boundaries(TPBs), which are beneficial for CO2 adsorption and subsequent conversion. Electrochemical impedance spectroscopy results indicate that the polarization resistance of 12.8 wt% GDCSFM cathode was obviously decreased from 0.46 to 0.30 cm^2 after the infiltration of GDC nanoparticles.展开更多
Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inve...Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective.展开更多
In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cell...In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cells(RSOCs).The polarization resistance(Rp)of the composite electrode NBCCFGd0.1Ce0.9O2(GDC)is only 0.079Ωcm^2 at 800℃under air.The single cell based on NBCCF-GDC electrode displays a peak power density of 0.941 W/cm^2 in fuel cell mode and a low Rp value of 0.134Ωcm^2.In electrolysis cell mode,the cell displays an outstanding oxygen evolution reaction(OER)activity and shows current density as high as 0.92 A/cm^2 with 50 vol%AH(Absolute Humidity)at 800℃and applied voltage of 1.3 V.Most importantly,the cell exhibits admirable durability of 60 h both in electrolysis mode and fuel cell mode with distinguished reversibility.All these results suggest that NBCCF is a promising candidate electrode for RSOC.展开更多
Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto con...Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.展开更多
Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all oth...Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed.展开更多
La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char...La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.展开更多
Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,th...Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,the catalytic test demonstrated that the biogas produced from biomass gasification mainly consists of H2,CH4,CO,and CO2,which were then be used as the fuel for solid oxide fuel cell(SOFC).Planar SOFCs were fabricated and adopted.The steam reforming of biogas was carried out at the anode of a SOFC to obtain a hydrogen-rich fuel.The performance of the SOFCs operating on generated biogas was investigated by I-V polarization and electrochemical impedance spectra characterizations.An excellent cell performance was obtained,for example,the peak power density of the SOFC reached 1391 mW·cm-2 at 750℃when the generated biogas was used as the fuel.Furthermore,the SOFC fuelled by simulated biogas delivered a very stable operation.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
基金the support of the Natural Sciences and Engineering Research Council of Canada(NSERC)Tier 1 Canada Research Chair in Green Hydrogen Production,the Québec Ministere de I'Economie,de I'lnnovation et de I'Energie(MEIE)[Développement de catalyseurs et d'electrodes innovants,a faibles couts,performants et durables pour la production d'hydrogene vert,funding reference number 00393501]。
文摘Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts.
基金financially supported by the National Key Research and Development Program of China (No.2021YFB4001400)。
文摘The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金financially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.2018ND133J)the National Natural Science Foundation of China(Nos.22309067 and 22101150)the Natural Science Foundation of Jiangsu Province,China(No.BK20190965).
文摘To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells(ITSOFCs),10mol%Ta5+doped in the B site of strontium ferrite perovskite oxide(SrTa_(0.1)Fe_(0.9)O_(3-δ),STF)is investigated and optimized.The effects of Ta^(5+)doping on structure,transition metal reduction,oxygen nonstoichiometry,thermal expansion,and electrical performance are evaluated systematically.Via 10mol%Ta^(5+)doping,the thermal expansion coefficient(TEC)decreased from 34.1×10^(-6)(SrFeO_(3-δ))to 14.6×10^(-6) K^(-1)(STF),which is near the TEC of electrolyte(13.3×10^(-6) K^(-1) for Sm_(0.2)Ce_(0.8)O_(1.9),SDC),indicates excellent thermomechanical compatibility.At 550-750℃,STF shows superior oxygen vacancy concentrations(0.262 to 0.331),which is critical in the oxygen-reduction reaction(ORR).Oxygen temperature-programmed desorption(O_(2)-TPD)indicated the thermal reduction onset temperature of iron ion is around 420℃,which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves.At 600℃,the STF electrode shows area-specific resistance(ASR)of 0.152Ω·cm^(2) and peak power density(PPD)of 749 mW·cm^(-2).ORR activity of STF was further improved by introducing 30wt%Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)powder,STF+SDC composite cathode achieving outstanding ASR value of 0.115Ω·cm2 at 600℃,even comparable with benchmark cobalt-containing cathode,Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF).Distribution of relaxation time(DRT)analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode.At 650℃,STF+SDC composite cathode achieving an outstanding PPD of 1117 mW·cm^(-2).The excellent results suggest that STF and STF+SDC are promising air electrodes for IT-SOFCs.
基金the funding from the Natural Science Foundation of Shaanxi Province(No.2020JQ-065)China Postdoctoral Science Foundation(No.2020 M683459)+1 种基金Start-up Research Fund of Southeast University(4003002330)Chen Xing Plan of Shanghai Jiao Tong University
文摘Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.
基金supported by the National Natural Science Foundation of China(No.22278203,No.22279057)the support of the Inner Mongolia major science and technology project(2021ZD0042),Development of integrated technology for CO_(2)emission reduction in electric power metallurgy industry
文摘Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode activity and stability is a tricky problem to be addressed for SOECs.Hence,it is urgent to develop suitable cathode materials with excellent catalytic activity and stability for further practical application of SOECs.Herein,a reduced perovskite oxide,Pr_(0.35)Sr_(0.6)Fe_(0.7)Cu_(0.2)Mo_(0.1)O_(3-δ)(PSFCM0.35),is developed as SOECs cathode to electrolyze CO_(2).After reduction in 10%H_(2)/Ar,Cu and Fe nanoparticles are exsolved from the PSFCM0.35 lattice,resulting in a phase transformation from cubic perovskite to Ruddlesden-Popper(RP)perovskite with more oxygen vacancies.The exsolved metal nanoparticles are tightly attached to the perovskite substrate and afford more active sites to accelerate CO_(2)adsorption and dissociation on the cathode surface.The significantly strengthened CO_(2)adsorption capacity obtained after reduction is demonstrated by in situ Fourier transform-infrared(FT-IR)spectra.Symmetric cells with the reduced PSFCM0.35(R-PSFCM0.35)electrode exhibit a low polarization resistance of 0.43Ωcm^(2)at 850℃.Single electrolysis cells with the R-PSFCM0.35 cathode display an outstanding current density of 2947 mA cm^(-2)at 850℃and 1.6 V.In addition,the catalytic stability of the R-PSFCM0.35 cathode is also proved by operating at 800℃with an applied constant current density of 600 mA cm^(-2)for 100 h.
基金the National Key R&D Program of China(No.2018YFB1502201)the Guangdong Basic and Applied Basic Research Foundation,China(No.2020A1515010551).
文摘For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening.
基金Foundation of Heilongjiang Bayi Agricultural University(Grant Nos.ZRCPY201916ZRCPY201817).
文摘A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.
文摘Solid oxide fuel cell(SOFC) technology and its status and problems were briefly described.Several topics for furtherresearch and development were proposed.
文摘We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20871110 and No.50730002). The authors express their appreciation to Xin-bo Lii, Qingdao Tianhe Graphite Co. Ltd. for supporting appropriate pore former graphite.
文摘A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.
基金supported by the National Natural Science Foundation of China (51372271,51172275)the National Basic Research Program of China (973 Program,2012CB215402)~~
文摘The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.
基金financial support from the Ministry of Science and Technology of China(Grant no.2017YFA0700102)the National Natural Science Foundation of China(Grants nos.21573222,91545202 and 21703237)+3 种基金Dalian Institute of Chemical Physics(Grant no.DICP DMTO201702)Dalian Outstanding Young Scientist Foundation(Grant no.2017RJ03)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDB17020200)the financial support from CAS Youth Innovation Promotion(Grant no.2015145)
文摘Solid oxide electrolysis cell(SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years.Exploring efficient catalyst for electrochemical CO2 reduction reaction(CO2 RR) at the cathode is a grand challenge for the research and development of SOEC. Sr2Fe1.5Mo0.5O6-δ(SFM) is one kind of promising cathode materials for SOEC, but suffers from insufficient activity for CO2 RR. Herein, Gd0.2Ce0.8O1.9(GDC)nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO2 RR performance in SOEC. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A cm-2 at 1.6 V and 800 °C, which is much higher than that over the SFM cathode(0.283 A cm-2). Temperature-programmed desorption of CO2 measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface active sites and three phase boundaries(TPBs), which are beneficial for CO2 adsorption and subsequent conversion. Electrochemical impedance spectroscopy results indicate that the polarization resistance of 12.8 wt% GDCSFM cathode was obviously decreased from 0.46 to 0.30 cm^2 after the infiltration of GDC nanoparticles.
基金the National Key Research and Development Program of China(2017YFA0700102)Natural Science Foundation of China(91845202)+3 种基金Dalian National Laboratory for Clean Energy(DNL180404)Strategic Priority Research Program of Chinese Academy of Sciences(XDB2000000)Natural Science Foundation of Fujian Province(2018J01088)State Key Laboratory of Structural Chemistry(20170011,20200012)。
文摘Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective.
基金financial support from National Key Research&Development Project(2016YFE0126900)the National Natural Science Foundation of China(51672095)+2 种基金Hubei Province(2018AAA057)the EPSRC Capital for Great Technologies Grant EP/L017008/1the China Scholarship Council for funding(201806160178)。
文摘In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cells(RSOCs).The polarization resistance(Rp)of the composite electrode NBCCFGd0.1Ce0.9O2(GDC)is only 0.079Ωcm^2 at 800℃under air.The single cell based on NBCCF-GDC electrode displays a peak power density of 0.941 W/cm^2 in fuel cell mode and a low Rp value of 0.134Ωcm^2.In electrolysis cell mode,the cell displays an outstanding oxygen evolution reaction(OER)activity and shows current density as high as 0.92 A/cm^2 with 50 vol%AH(Absolute Humidity)at 800℃and applied voltage of 1.3 V.Most importantly,the cell exhibits admirable durability of 60 h both in electrolysis mode and fuel cell mode with distinguished reversibility.All these results suggest that NBCCF is a promising candidate electrode for RSOC.
基金financial support from the National Key R&D Program of China (Grant 2017YFA0700102)the National Natural Science Foundation of China (Grants 21573222 and 91545202)+4 种基金Dalian National Laboratory for Clean Energy (DNL180404)Dalian Institute of Chemical Physics (Grant DICP DMTO201702)Dalian Outstanding Young Scientist Foundation (Grant 2017RJ03)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDB17020200)the financial support from CAS Youth Innovation Promotion (Grant no. 2015145)
文摘Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.
基金financially supported by the National Natural Science Foundation of China(Grant nos.21376001,21576028 and 21506012)。
文摘Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed.
基金Project supported by the National Natural Science Foundation of China (50204007)the Foundation of Yunnan Province (2005PY01-33)
文摘La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.
基金financially supported by the National Natural Science Foundation of China(Grants Nos.51302135 and 51678291)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190965)+1 种基金the Research Project of Nanjing Institute of Technology(Grant No.YKJ201435)the Australian Research Council(ARC)Discovery Early Career Researcher Award DE180100773。
文摘Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,the catalytic test demonstrated that the biogas produced from biomass gasification mainly consists of H2,CH4,CO,and CO2,which were then be used as the fuel for solid oxide fuel cell(SOFC).Planar SOFCs were fabricated and adopted.The steam reforming of biogas was carried out at the anode of a SOFC to obtain a hydrogen-rich fuel.The performance of the SOFCs operating on generated biogas was investigated by I-V polarization and electrochemical impedance spectra characterizations.An excellent cell performance was obtained,for example,the peak power density of the SOFC reached 1391 mW·cm-2 at 750℃when the generated biogas was used as the fuel.Furthermore,the SOFC fuelled by simulated biogas delivered a very stable operation.