期刊文献+
共找到710篇文章
< 1 2 36 >
每页显示 20 50 100
Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process
1
作者 Shixue Liu Zhijing Liu +1 位作者 Shuxing Zhang Hao Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期405-411,共7页
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b... For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening. 展开更多
关键词 solid oxide fuel cell anode degradation focused ion beam-scanning electron microscopy lattice Boltzmann method
下载PDF
From concept to commercialization:A review of tubular solid oxide fuel cell technology
2
作者 Ruyan Chen Yuan Gao +4 位作者 Jiutao Gao Huiyu Zhang Martin Motola Muhammad Bilal Hanif Cheng-Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期79-109,I0003,共32页
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st... The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed. 展开更多
关键词 Tubular solid oxide fuel cell Support material Geometric structure Preparation methods STACK
下载PDF
Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells 被引量:4
3
作者 Xin Yang Zhihong Du +5 位作者 Qian Zhang Zewei Lyu Shixue Liu Zhijing Liu Minfang Han Hailei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1181-1189,共9页
Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects o... Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni-yttria-stabilized zirconia anode-supported single cell were investigated.The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy.Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests.In addition,the long-term stability of the single cell was evaluated at 700℃for 3000 h.After an initial decline,the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh.The main performance loss of the cell originates from the initial degradation. 展开更多
关键词 solid oxide fuel cell Ni-YSZ anode focused ion beam Ni migration electrochemical performance
下载PDF
Enhancing layered perovskite ferrites with ultra-high-density nanoparticles via cobalt doping for ceramic fuel cell anode
4
作者 Shuo Zhai Rubao Zhao +9 位作者 Hailong Liao Ling Fu Senran Hao Junyu Cai Yifan Wu Jian Wang Yunhong Jiang Jie Xiao Tao Liu Heping Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期39-48,共10页
Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural co... Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes. 展开更多
关键词 solid oxide fuel cell anode Ethane fuel NANOPARTICLE EXSOLUTION Layered perovskite Ferrites
下载PDF
Performance of La_(1-x)Sr_xCr_(1-y)Mn_yO_(3-δ) anode materials for intermediate temperature solid oxide fuel cell 被引量:2
5
作者 陈秀华 马文会 +1 位作者 杨斌 戴永年 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期998-1001,共4页
La1-xSrxCr1-yMnyO3-δ(LSCM) anode materials were synthesized by glycine nitrate process(GNP). Thermo-gravimetric analysis(TGA) and differential scanning calorimetric(DSC) methods were adopted to investigate the reacti... La1-xSrxCr1-yMnyO3-δ(LSCM) anode materials were synthesized by glycine nitrate process(GNP). Thermo-gravimetric analysis(TGA) and differential scanning calorimetric(DSC) methods were adopted to investigate the reaction process of LSCM anode materials. The oxides prepared were characterized via X-ray diffraction(XRD),scanning electron microscope and energy dispersive spectroscopy(SEM-EDS),direct current four-electrode and temperature process reduction(TPR) techniques. XRD patterns indicate that perovskite phase created after the precursor was sintered at 1 000 ℃ for 5 h,and single perovskite-type oxides formed after the precursor were sintered at 1 200 ℃ for 5 h. The powders are micrometer size after sintering at 1 000 ℃ and 1 200 ℃,respectively. The conductivities of LSCM samples increase linearly with increasing the temperature from 250 ℃ to 850 ℃ in air and the maximum value is 32 S/cm for La0.7Sr0.3Cr0.5Mn0.5O3-δ. But it is lower about two orders of magnitude in pure hydrogen or methane than that of the same sample in the air. TPR result indicates that LSCM offers excellently catalytic performance. 展开更多
关键词 常温固体氧化物燃料电池 阳极材料 甘氨酸 硝化
下载PDF
Development of nickel based cermet anode materials in solid oxide fuel cells–Now and future 被引量:5
6
作者 Yu Liu Zongping Shao +1 位作者 Toshiyuki Mori San Ping Jiang 《Materials Reports(Energy)》 2021年第1期101-126,共26页
High temperature solid oxide fuel cell(SOFC)is the most efficient and clean energy conversion technology to electrochemically convert the chemical energy of fuels such as hydrogen,natural gas and hydrocarbons to elect... High temperature solid oxide fuel cell(SOFC)is the most efficient and clean energy conversion technology to electrochemically convert the chemical energy of fuels such as hydrogen,natural gas and hydrocarbons to electricity,and also the most viable alternative to the traditional thermal power plants.However,the power output of a SOFC critically depends on the characteristics and performance of its key components:anode,electrolyte and cathode.Due to the highly reducing environment and strict requirements in electrical conductivity and catalytic activity,there are limited choices in the anode materials of SOFCs,particularly for operation in the intermediate temperature range of 500–800C.Among them,Ni-based cermets are the most common and popular anode materials of SOFCs.The objective of this paper is to review the development of Ni-based anode materials in SOFC from the viewpoints of materials microstructure,performance and industrial scalability associated with the fabrication and optimization processes.The latest advancement in nano-structure architecture,contaminant tolerance and interface optimization of Ni-based cermet anodes is presented.And at the end of this paper,we propose and appeal for the collaborative work of scientists from different disciplines that enable the inter-fusion research of fabrication,microanalysis and modelling,aiming at the challenges in the development of Ni-based cermet anodes for commercially viable intermediate temperature SOFC or IT-SOFC technologies. 展开更多
关键词 Ni-based cermet anode Intermediate temperature solid oxide fuel cell ACTIVITY Interface optimization Carbon deposition Sulfur poisoning Multidisciplinary collaborative work
下载PDF
Measuring Porosity of Anodes in Solid Oxide Fuel Cell (SOFC) through Water Archimedeans Porosimetry
7
作者 Syed Mubashar Hassan Syed Ali Hasnain 《Journal of Power and Energy Engineering》 2015年第6期46-53,共8页
The present research is aimed to measure the porosity of anodes in solid oxide fuel cell through water Archimedeans method. There are various alternatives available to replace fossil fuel cells like nuclear power, win... The present research is aimed to measure the porosity of anodes in solid oxide fuel cell through water Archimedeans method. There are various alternatives available to replace fossil fuel cells like nuclear power, wind energy, solar energy, bio fuel, and geothermal and fuel cells. Among all the alternatives of fossil fuel, one form of energy production that stands out from the rest and promises a sustainable future energy is fuel cell. Moreover, it offers many advantages in contrast to other forms of energy generation. An Archimedean approach for water immersion porosimetry is carried out. Some of the results are beyond rational limits, and given negative and sometime above 100 percent porosity. The reasons for these unacceptable results are either due to water ingress into the sample or the sample turns into buoyant due to air in the cling film. The results from Archimedean porosimetry should only be used qualitatively due to errors associated with the results. It is also noted that Archimedean porosimetry is not the ideal technique for measuring the porosity of coated samples. It is suggested that larger samples should be analyzed that will help to minimize the weighing errors. 展开更多
关键词 solid oxide fuel cell POROSITY anodes Archimedeans
下载PDF
Progress and challenges of carbon-fueled solid oxide fuel cells anode 被引量:8
8
作者 Minjian Ma Xiaoxia Yang +3 位作者 Jinshuo Qiao Wang Sun Zhenhua Wang Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期209-222,共14页
Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all oth... Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed. 展开更多
关键词 CARBON anodes solid oxide fuel cells Energy conversion Reaction processes
下载PDF
Preparation and Characterization of Component Materials for Intermediate Temperature Solid Oxide Fuel Cell by Glycine-Nitrate Process 被引量:5
9
作者 刘荣辉 杜青山 +4 位作者 马文会 王华 杨斌 戴永年 马学菊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期98-103,共6页
La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char... La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility. 展开更多
关键词 intermediate temperature solid oxide fuel cell glycine-nitrate process properties of materials rare earths
下载PDF
Development and optimisation of electrode materials in solid oxide fuel cells 被引量:2
10
作者 JIANG San ping(Fuel Cell Strategic Research Programme, School of Mechanical and Production Engineering,Nanyang Technological University, Nanyang Avenue, Singapore 639798) 《电池》 CAS CSCD 北大核心 2002年第3期133-137,共5页
Solid oxide fuel cell (SOFC) is an all solid electrochemical device to convert fuels such as hydrogen and natural gas to electricity with high efficiency and very low greenhouse gas emission compared to traditional th... Solid oxide fuel cell (SOFC) is an all solid electrochemical device to convert fuels such as hydrogen and natural gas to electricity with high efficiency and very low greenhouse gas emission compared to traditional thermal power generation plants. Moreover, the reliability and efficiency of SOFC is critically dependent on the performance and stability of its components including anode, cathode and electrolyte. This in turn is largely dependent on the material selection and the fabrication processes. In this paper, specific examples are given to demonstrate strategy and process in the development and optimisation of electrode materials such as Ni/Y 2O 3 ZrO 2 cermet anodes and (LaSr)MnO 3 based cathodes. The results also demonstrate the importance of fabrication processes and that the understanding of the electrode process plays a very important role in the optimisation process of electrode materials. 展开更多
关键词 固体氧化物燃料电池 电极材料 电极优化
下载PDF
La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes as anodes in LaGaO_(3)-based direct carbon solid oxide fuel cells 被引量:1
11
作者 CHEN Tian-yu XIE Yong-min +7 位作者 LU Zhi-bin WANG Liang CHEN Zhe-qin ZHONG Xiao-cong LIU Jia-ming WANG Rui-xiang XU Zhi-feng OUYANG Shao-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1788-1798,共11页
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for... Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs. 展开更多
关键词 direct carbon solid oxide fuel cells anode material La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes Ni nanoparticles
下载PDF
Microwave synthesis of La_(1-x)Sr_xCo_(1-y)Fe_yO_3 cathode materials for solid oxide fuel cells
12
作者 ZHAI Xiujing,SHI Weixi,FU Yan,and ZHANG Nan School of Materials & Metallurgy,Northeastern University,Shenyang 110004,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第6期576-578,共3页
La1-xSrxCo1-yFeyO3 cathode materials for solid oxide fuel cells were prepared by the microwave synthesis method.The reaction mechanism was studied using a thermal analysis method.The influences of microwave synthesis ... La1-xSrxCo1-yFeyO3 cathode materials for solid oxide fuel cells were prepared by the microwave synthesis method.The reaction mechanism was studied using a thermal analysis method.The influences of microwave synthesis conditions were examined and the characteristics of the samples were determined by X-ray diffraction and scanning electron microscopy.It was found that the optimum conditions were the microwave power of 800 W and the reaction time of 40 min.Samples with perosvkite-type crystal structure were obtained.The samples consist of uniformly distributed internal particles and the particle size is less than 1 μm. 展开更多
关键词 solid oxide fuel cells cathode materials microwave synthesis thermal analysis MICROSTRUCTURE
下载PDF
The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode
13
作者 李彦 骆仲泱 +3 位作者 余春江 罗丹 许祝安 岑可法 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第11期1124-1129,共6页
Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electr... Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.8Sm.2O.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect ofmicrostructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3-2Ni(OH)2-4H2O or Ni(NO3)2-6H2O decomposition technique. 展开更多
关键词 solid oxide fuel cell Ni-SDC anode Electrical conductivity MICROSTRUCTURE NiO powder Fabrication method
下载PDF
Fabrication and performance of atmospheric plasma sprayed solid oxide fuel cells with liquid antimony anodes
14
作者 Yidong Jiang Wenfei Mo +2 位作者 Tianyu Cao Yixiang Shi Ningsheng Cai 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期360-367,共8页
A solid oxide fuel cell(SOFC)with a liquid antimony anode(LAA)is a potential energy conversion technology for the use of impurity-containing fuels.Atmospheric plasma spraying(APS)technology has become a promising LAAS... A solid oxide fuel cell(SOFC)with a liquid antimony anode(LAA)is a potential energy conversion technology for the use of impurity-containing fuels.Atmospheric plasma spraying(APS)technology has become a promising LAASOFC preparation method because of its economy and convenience.In this paper,button SOFCs with different cathode materials and ratios of pore former were prepared by the APS method and were operated at 750C.The effect of the cathode structure on the electrochemical performance of the LAA-SOFCs was analyzed,and an optimized spraying method for LAA-SOFCs was developed.A tubular LAA-SOFC was prepared using the APS method based on the optimized spraying method,and a peak power of 2.5 W was reached.The tubular cell was also measured at a constant current of 2 A for 20 h and was fed with a sulfur-containing fuel to demonstrate its impurity resistance and electrode stability. 展开更多
关键词 solid oxide fuel cells Liquid antimony anodes Atmospheric plasma spraying Pore former
下载PDF
Effect of H_2S Flow Rate and Concentration on Performance of H_2S/Air Solid Oxide Fuel Cell 被引量:4
15
作者 钟理 张腾云 +3 位作者 陈建军 WEI Guolin LUO Jingli K.Chung 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期306-309,共4页
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa... A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃. 展开更多
关键词 fuel cell performance H2S/air fuel cell solid oxide fuel cell (sofc)
下载PDF
The Effect of Fabrication Conditions for GDC Buffer Layer on Electrochemical Performance of Solid Oxide Fuel Cells 被引量:2
16
作者 Jung-Hoon Song Myung Geun Jung +1 位作者 Hye Won Park Hyung-Tae Lim 《Nano-Micro Letters》 SCIE EI CAS 2013年第3期151-158,共8页
A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect o... A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell(SOFC) performance was investigated. A finer GDC powder(i.e., ultra-high surface area), a higher sintering temperature(1290℃), and a larger amount of sintering aid(12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of(Zr, Ce)O2 and/or excess cobalt grain boundaries(GBs) at higher sintering temperatures with a large amount of sintering aid(i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer. 展开更多
关键词 solid oxide fuel cell(sofc) Gd-doped ceria Sintering aid Sol-gel spin coating
下载PDF
A Case Study of a Solid Oxide Fuel Cell Plant on Board a Cruise Ship 被引量:3
17
作者 Luca Micoli Tommaso Coppola Maria Turco 《Journal of Marine Science and Application》 CSCD 2021年第3期524-533,共10页
The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and as... The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and assisting three dual-fuel(DF)diesel/LNG generator sets.LNG consumption and emissions are estimated both for the SOFC plant and DF generator sets.It results that the use of LNG-SOFC plant in comparison to DF generator sets allows to limit significantly the SO_(x),CO,NO_(x),PM emissions and to reduce the emission of CO_(2)by about 11%.A prediction of the weight and volume of the SOFC plant is conducted and a preliminary modification of the general arrangement of the cruise ship is suggested,according to the latest international rules.It results that the SOFC plant is heavier and occupies more volume on board than a DF gen-set;nevertheless,these features do not affect the floating and the stability of the cruise ship. 展开更多
关键词 solid oxide fuel cell(sofc) Cruise ship Greenhouse gas emissions CO_(2)emissions Liquefied natural gas(LNG) Dual-fuel engines
下载PDF
Review: Perspectives on the metallic interconnects for solid oxide fuel cells 被引量:2
18
作者 ZHUWei-zhong YANMi 《Journal of Zhejiang University Science》 CSCD 2004年第12期1471-1503,共33页
The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs )over the last two decades are reviewed. The criteria for the application of materials as interconnects ar... The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs )over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in promoting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for. 展开更多
关键词 solid oxide fuel cells (sofcs) Interconnects Metallic materials
下载PDF
Data-driven nonlinear control of a solid oxide fuel cell system 被引量:2
19
作者 李益国 沈炯 +2 位作者 K.Y.Lee 刘西陲 费文哲 《Journal of Central South University》 SCIE EI CAS 2012年第7期1892-1901,共10页
Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operat... Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region. 展开更多
关键词 solid oxide fuel cell sofc data-driven method virtual reference feedback tuning (VRFT) support vector machine(SVM) ANTI-WINDUP
下载PDF
LSM-infiltrated LSCF cathodes for solid oxide fuel cells 被引量:1
20
作者 Ze Liu Mingfei Liu +1 位作者 Lei Yang Meilin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期555-559,共5页
Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we rep... Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we report our findings on the effect of a thin film coating of La0.85Sr0.15MnO3-δ (LSM) on the performance of a porous La0.6Sr0.4Co0.2Feo.8O3-δ(LSCF) cathode. When the thicknesses of the LSM coatings are appropriate, an LSM-coated LSCF electrode showed better stability and lower polarization (or higher activity) than the blank LSCF cathode without LSM infiltration. An anode-supported cell with an LSM-infiltrated LSCF cathode demonstrated at 825 ℃ a peak power density of -1.07 W/cm2, about 24% higher than that of the same cell without LSM infiltration (-0.86 W/cm2). Further, the LSM coating enhanced the stability of the electrode; there was little degradation in performance for the cell with an LSM-infiltrated LSCF cathode during 100 h operation. 展开更多
关键词 solid oxide fuel cell sofc La0.6Sr0.4Co0.2Fe0.8O3- (LSCF) La0.85Sr0.15 MnO3-6 (LSM) INFILTRATION cathode
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部