A use of Sulfonate ester as a linker in synthesis of (-aminoalkanols was reported. Diols were tethered onto polystyryl sulfonyl chloride resin, yielding sulfonate resins (2). After cleaved by diethyl amine, diisopropy...A use of Sulfonate ester as a linker in synthesis of (-aminoalkanols was reported. Diols were tethered onto polystyryl sulfonyl chloride resin, yielding sulfonate resins (2). After cleaved by diethyl amine, diisopropylamine and propylamine respectively, three (-aminoalkanols were obtained.展开更多
Polystyrene-supported 4-(phenylseleno)morpholine was synthesized and could be used as an efficient ?selenenylating agent for saturated aldehydes. ?Haloaldehydes were prepared by reaction of polystyrene-supported ?sel...Polystyrene-supported 4-(phenylseleno)morpholine was synthesized and could be used as an efficient ?selenenylating agent for saturated aldehydes. ?Haloaldehydes were prepared by reaction of polystyrene-supported ?selenoaldehydes with bromine or sulfuryl chloride in good yield and high purity.展开更多
Reaction of polymer-supported a-selenoaldehydes with Grignard reagents afforded polymer-bound B-hydroxyalkyl selenides, which treated with thionyl chloride and triethylamine leading to (E)-1, 2-disubstituted ethenes i...Reaction of polymer-supported a-selenoaldehydes with Grignard reagents afforded polymer-bound B-hydroxyalkyl selenides, which treated with thionyl chloride and triethylamine leading to (E)-1, 2-disubstituted ethenes in good yield.展开更多
A novel facile procedure for traceless solid-phase synthesis of 3-substituted isoxazoles in good yields and with excellent purities using polymer-supported vinyl selenide has been developed.
Reaction of polystyrene-supported lithium selenide with 3-acetoxy-2-methylene-alkanoates afforded the corresponding allyl selenide resins and subsequent cleavage from the polymer by treating with methyl iodide to furn...Reaction of polystyrene-supported lithium selenide with 3-acetoxy-2-methylene-alkanoates afforded the corresponding allyl selenide resins and subsequent cleavage from the polymer by treating with methyl iodide to furnish (Z)-allyl iodides in good yields and high purities. The polymeric selenium reagent can be regenerated and reused. So it is a environmentally benign reagent.展开更多
Sulfide solid electrolytes are widely regarded as one of the most promising technical routes to realize all-solid-state batteries(ASSBs)due to their high ionic conductivity and favorable deformability.However,the rela...Sulfide solid electrolytes are widely regarded as one of the most promising technical routes to realize all-solid-state batteries(ASSBs)due to their high ionic conductivity and favorable deformability.However,the relatively high price of the crucial starting material,Li_(2)S,results in high costs of sulfide solid electrolytes,limiting their practical application in ASSBs.To solve this problem,we develop a new synthesis route of Li_(2)S via liquid-phase synthesis method,employing lithium and biphenyl in 1,2-dimethoxyethane(DME)ether solvent to form a lithium solution as the lithium precursor.Because of the comparatively strong reducibility of the lithium solution,its reaction with sulfur proceeds effectively even at room temperature.This new synthesis route of Li_(2)S starts with cheap precursors of lithium,sulfur,biphenyl and DME solvent,and the only remaining byproduct(DME solution of biphenyl)after the collection of Li_(2)S product can be recycled and reused.Besides,the reaction can proceed effectively at room temperature with mild condition,reducing energy cost to a great extent.The as-synthesized Li_(2)S owns uniform and extremely small particle size,proved to be feasible in synthesizing sulfide solid electrolytes(such as the solid-state synthesis of Li_(6)PS_(5)C_(l)).Spontaneously,this lithium solution can be directly employed in the synthesis of Li_(3)PS_(4) solid electrolytes via liquid-phase synthesis method,in which the centrifugation and heat treatment processes of Li_(2)S are not necessary,providing simplified production process.The as-synthesized Li_(3)PS_(4) exhibits typical Li+conductivity of 1.85×10^(-4) S·cm^(-1) at 30℃.展开更多
Based on the pseudo-dilution effect (PDE) on solid support, three cyclopeptides with an aliphatic-aryl ether bond as the bridge were synthesized via SN2 reaction between bromoacetylated at N-terminal and the phenol –...Based on the pseudo-dilution effect (PDE) on solid support, three cyclopeptides with an aliphatic-aryl ether bond as the bridge were synthesized via SN2 reaction between bromoacetylated at N-terminal and the phenol –OH group in C-terminal Tyr residue. All the products were obtained in good overall yields and characterized by related analytic data.展开更多
A novel facile solid-phase organic synthesis of aryl vinyl ethers by reaction of polystyrene-supported 2-phenylsulfonylethanol with phenols under Mitsunobu conditions and subsequent elimination reaction with DBU has b...A novel facile solid-phase organic synthesis of aryl vinyl ethers by reaction of polystyrene-supported 2-phenylsulfonylethanol with phenols under Mitsunobu conditions and subsequent elimination reaction with DBU has been developed. The advantages of this method include straightforward operation, good yield and high purity of the products. Alternatively, a typical example of Suzuki coupling reaction on-resin was further applied to prepare 4-phenylphenyl vinyl ether for extending this method.展开更多
基金NNSFC (20074017, 29844001) and Visiting Scholar Foundation of Key Lab. in University.
文摘A use of Sulfonate ester as a linker in synthesis of (-aminoalkanols was reported. Diols were tethered onto polystyryl sulfonyl chloride resin, yielding sulfonate resins (2). After cleaved by diethyl amine, diisopropylamine and propylamine respectively, three (-aminoalkanols were obtained.
文摘Polystyrene-supported 4-(phenylseleno)morpholine was synthesized and could be used as an efficient ?selenenylating agent for saturated aldehydes. ?Haloaldehydes were prepared by reaction of polystyrene-supported ?selenoaldehydes with bromine or sulfuryl chloride in good yield and high purity.
基金Project 29932020 was supported by the National Natural Science Foundation of China.
文摘Reaction of polymer-supported a-selenoaldehydes with Grignard reagents afforded polymer-bound B-hydroxyalkyl selenides, which treated with thionyl chloride and triethylamine leading to (E)-1, 2-disubstituted ethenes in good yield.
基金We thank the National Natural Science Foundation of China(No.20562005)NSF of Jiangxi Province for financial support.
文摘A novel facile procedure for traceless solid-phase synthesis of 3-substituted isoxazoles in good yields and with excellent purities using polymer-supported vinyl selenide has been developed.
基金the National Natural Science Foundation of China (No. 20562005) NSF of Jiangxi Province (No. 0620021) for financial support.
文摘Reaction of polystyrene-supported lithium selenide with 3-acetoxy-2-methylene-alkanoates afforded the corresponding allyl selenide resins and subsequent cleavage from the polymer by treating with methyl iodide to furnish (Z)-allyl iodides in good yields and high purities. The polymeric selenium reagent can be regenerated and reused. So it is a environmentally benign reagent.
基金This work is supported by Key R&D Project funded by Department of Science and Technology of Jiangsu Province(Grant No.BE2020003)Key Program-Automobile Joint Fund of National Natural Science Foundation of China(Grant No.U1964205)+5 种基金General Program of National Natural Science Foundation of China(Grant No.51972334)General Program of National Natural Science Foundation of Beijing(Grant No.2202058)Cultivation Project of Leading Innovative Experts in Changzhou City(Grant No.CQ20210003)National Overseas High-level Expert Recruitment Program(Grant No.E1JF021E11)Talent Program of Chinese Academy of Sciences,"Scientist Studio Program Funding"from Yangtze River Delta Physics Research Center and Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIES-SS0001)Science and Technology Research Research Institute of China Three Gorges Corporation(Grant No.202103402).
文摘Sulfide solid electrolytes are widely regarded as one of the most promising technical routes to realize all-solid-state batteries(ASSBs)due to their high ionic conductivity and favorable deformability.However,the relatively high price of the crucial starting material,Li_(2)S,results in high costs of sulfide solid electrolytes,limiting their practical application in ASSBs.To solve this problem,we develop a new synthesis route of Li_(2)S via liquid-phase synthesis method,employing lithium and biphenyl in 1,2-dimethoxyethane(DME)ether solvent to form a lithium solution as the lithium precursor.Because of the comparatively strong reducibility of the lithium solution,its reaction with sulfur proceeds effectively even at room temperature.This new synthesis route of Li_(2)S starts with cheap precursors of lithium,sulfur,biphenyl and DME solvent,and the only remaining byproduct(DME solution of biphenyl)after the collection of Li_(2)S product can be recycled and reused.Besides,the reaction can proceed effectively at room temperature with mild condition,reducing energy cost to a great extent.The as-synthesized Li_(2)S owns uniform and extremely small particle size,proved to be feasible in synthesizing sulfide solid electrolytes(such as the solid-state synthesis of Li_(6)PS_(5)C_(l)).Spontaneously,this lithium solution can be directly employed in the synthesis of Li_(3)PS_(4) solid electrolytes via liquid-phase synthesis method,in which the centrifugation and heat treatment processes of Li_(2)S are not necessary,providing simplified production process.The as-synthesized Li_(3)PS_(4) exhibits typical Li+conductivity of 1.85×10^(-4) S·cm^(-1) at 30℃.
文摘Based on the pseudo-dilution effect (PDE) on solid support, three cyclopeptides with an aliphatic-aryl ether bond as the bridge were synthesized via SN2 reaction between bromoacetylated at N-terminal and the phenol –OH group in C-terminal Tyr residue. All the products were obtained in good overall yields and characterized by related analytic data.
基金Acknowledgement This work was supported by the National Natural Science Foundation of China (No. 21062007) and the Research Program of Jiangxi Province Department of Education (No. GJJ10385, GJJ11380).
文摘A novel facile solid-phase organic synthesis of aryl vinyl ethers by reaction of polystyrene-supported 2-phenylsulfonylethanol with phenols under Mitsunobu conditions and subsequent elimination reaction with DBU has been developed. The advantages of this method include straightforward operation, good yield and high purity of the products. Alternatively, a typical example of Suzuki coupling reaction on-resin was further applied to prepare 4-phenylphenyl vinyl ether for extending this method.