Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time ...Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.展开更多
For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal el...For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.展开更多
Pt?Au-SPE electrodes made by the successive chemical deposition of Au and Pt on Nafion membranes were tested and compared with the single metal-SPE electrodes for surface oxidation, CO adsorption and oxidation. Part o...Pt?Au-SPE electrodes made by the successive chemical deposition of Au and Pt on Nafion membranes were tested and compared with the single metal-SPE electrodes for surface oxidation, CO adsorption and oxidation. Part of the surface of the binary metal electrodes behaves differently from either Au or Pt single metal-SPE electrode for COads oxidation, revealing surface modulation effects in the binary metal electrode. However, these mudulated surfaces have no appreciable contribution to the electrode activity for CO oxidation. The electrode activity for CO oxidation is mainly governed by the total Pt surface area of the binary electrodes. The predeposited Au was found to be favorable for higher dispersion of the successively deposited Pt.展开更多
A new type quasi-solid state electrolyte was prepared by solidifying liquid electrolytes con- taining organic solvents (such as mixture of ethylene carbonate (EC) and propylene carbonate (PC), 3- methoxypropinitrile (...A new type quasi-solid state electrolyte was prepared by solidifying liquid electrolytes con- taining organic solvents (such as mixture of ethylene carbonate (EC) and propylene carbonate (PC), 3- methoxypropinitrile (NMP) and N-methyl-oxazolidin- one (NMO)) with comb-like molten salt type polymer, and was for the first time employed in dyesensitized solar cells (DSSCs). The optimal electrolyte compo- sition was obtained by regulating the polymer content in the electrolytes and optimizing performance data of the electrolytes and assembled cells, yielding a maximum conversion efficiency of 6.58% (AM 1.5, 100 mW·cm?2). Furthermore, the existence of this new type polymer in the electrolyte suppresses the evaporation of organic solvent and improves the sta- bility of the cells.展开更多
文摘Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.
文摘For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.
文摘Pt?Au-SPE electrodes made by the successive chemical deposition of Au and Pt on Nafion membranes were tested and compared with the single metal-SPE electrodes for surface oxidation, CO adsorption and oxidation. Part of the surface of the binary metal electrodes behaves differently from either Au or Pt single metal-SPE electrode for COads oxidation, revealing surface modulation effects in the binary metal electrode. However, these mudulated surfaces have no appreciable contribution to the electrode activity for CO oxidation. The electrode activity for CO oxidation is mainly governed by the total Pt surface area of the binary electrodes. The predeposited Au was found to be favorable for higher dispersion of the successively deposited Pt.
基金supported by the State Key Basic Research and Development Program(Grant No.G2000028205)the High-Tech Research and Development Program of China(Grant No.2002AA302403)the National Natural Science Foundation of China(Grant Nos.50221201 and 50473055).
文摘A new type quasi-solid state electrolyte was prepared by solidifying liquid electrolytes con- taining organic solvents (such as mixture of ethylene carbonate (EC) and propylene carbonate (PC), 3- methoxypropinitrile (NMP) and N-methyl-oxazolidin- one (NMO)) with comb-like molten salt type polymer, and was for the first time employed in dyesensitized solar cells (DSSCs). The optimal electrolyte compo- sition was obtained by regulating the polymer content in the electrolytes and optimizing performance data of the electrolytes and assembled cells, yielding a maximum conversion efficiency of 6.58% (AM 1.5, 100 mW·cm?2). Furthermore, the existence of this new type polymer in the electrolyte suppresses the evaporation of organic solvent and improves the sta- bility of the cells.