Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC cur...Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.展开更多
A design scheme of the intelligent SSB (Solid State Breaker) based on the IGCT (Integrated Gate Commutated Thyris- tor) is presented. The topology of switch module and the structure of the SSB are proposed. Firstly, t...A design scheme of the intelligent SSB (Solid State Breaker) based on the IGCT (Integrated Gate Commutated Thyris- tor) is presented. The topology of switch module and the structure of the SSB are proposed. Firstly, to the IGCT’s over-voltage sensitivity problem, a new technique of reducing the over-voltage is introduced, which releases the elect romantics energy of faulty line by a capacitive current branch to reduce the amplitude of over-voltage. Secondly, the principle of over-voltage suppression with current release branch is analyzed, and the overall control scheme of solid- state breaker is put forward. Finally, the simulation results also demonstrate its obvious effectiveness in over-voltage suppression after adding a current release branch into the SSB.展开更多
With the development of power electronic technologies and distributed power generation,DC distribution networks attract increasing attention due to their various advantages compared with traditional AC distribution ne...With the development of power electronic technologies and distributed power generation,DC distribution networks attract increasing attention due to their various advantages compared with traditional AC distribution networks.However,DC fault protection is one of the major issues in DC distribution networks.To improve their reliability and protect the semiconductor devices under DC faults,a current-limiting and energy-transferring DC circuit breaker topology is proposed in this paper.By applying passive components and thyristors,the proposed topology is capable of quickly limiting the fault current and transferring the faulty energy.The working principle,mathematical model and parameter designing method of the proposed topology are presented in this paper.The simulation results verify that the proposed DC circuit breaker could effectively limit the fault current and quickly interrupt the fault current.Cost and conduction power loss evaluation proves the practicality of the proposed topology in medium-voltage DC distribution networks.展开更多
The high-voltage direct current(HVDC)circuit breaker is becoming popular with the rapid development of the flexible HVDC grid for efficient DC fault ride-through purposes.This paper proposes a novel module for recipro...The high-voltage direct current(HVDC)circuit breaker is becoming popular with the rapid development of the flexible HVDC grid for efficient DC fault ride-through purposes.This paper proposes a novel module for reciprocating HVDC circuit breaker topology,whose branch connections are able to switch between series and parallel modes to limit the rising rate and interrupt the DC fault currents.Diode-bridge submodules(DBSMs)are used to compose the main branch for current interruption.Besides fault clearance,the proposed topology has the advantageous function of DC fault current limiting by employing DBSMs with bi-directional conduction capability.The topology can easily switch among branch connection modes through the assembled trans-valves,and their resistance and reactance are very small in the normal state when branches are in parallel and the values become promptly large in the transient state when the branches are series connected.With the modular design,it is easy to change the number of branches or sub-modules and the types of sub-modules to adapt to more specific needs.A 6-terminal modular multi-level converter(MMC)based HVDC grid is established in PSCAD/EMTDC,and various simulation scenarios are carried out to validate the proposed topology.展开更多
The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial...The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial applications.In this study,two objectives with the same dimensional measurement unit,namely,the total capital investment cost of FCLs and circuit breaker loss related to short-circuit currents,are considered.The circuit breaker loss model is developed based on the attenuation rule of the circuit breaker service life.The circuit breaker loss is used to quantify the current-limiting effect to avoid the problem of weight selection in a multi-objective problem.The IEEE 10-generator 39-bus system in New England is used to evaluate the performance of the proposed genetic algorithm(GA)method.Comparative and sensitivity analyses are performed.The results of the optimized plan are validated through simulations,indicating the significant potential of the GA for such optimization.展开更多
DC technologies will be essential building blocks for future DC distribution networks.As in any DC system,these networks will face crucial threats imposed by short-circuit DC faults.Protection is thus of great interes...DC technologies will be essential building blocks for future DC distribution networks.As in any DC system,these networks will face crucial threats imposed by short-circuit DC faults.Protection is thus of great interest,and it will likely rely on DC circuit breakers(DCCBs).Among available configurations,Z-source solid-state circuit breakers(Z-SSCBs)are promising candidates for protecting low and medium-voltage distribution networks,as well as DC equipment due to their structural and control simplicity and low cost.In this paper,start-ofthe-art of Z-SSCBs topologies is reviewed.To set the context,the use of DC technologies for grid integration of renewables,DC power transmission,and the main types of DCCBs to protect DC transmission and distribution corridors are discussed.The Z-SSCB topologies are then classified into unidirectional and bidirectional.Advantages and disadvantages of different configurations are compared and analyzed based on existing research.Finally,a perspective on the future development of Z-SSCBs is discussed and potential challenges are elucidated.展开更多
直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协...直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。展开更多
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
文摘Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.
文摘A design scheme of the intelligent SSB (Solid State Breaker) based on the IGCT (Integrated Gate Commutated Thyris- tor) is presented. The topology of switch module and the structure of the SSB are proposed. Firstly, to the IGCT’s over-voltage sensitivity problem, a new technique of reducing the over-voltage is introduced, which releases the elect romantics energy of faulty line by a capacitive current branch to reduce the amplitude of over-voltage. Secondly, the principle of over-voltage suppression with current release branch is analyzed, and the overall control scheme of solid- state breaker is put forward. Finally, the simulation results also demonstrate its obvious effectiveness in over-voltage suppression after adding a current release branch into the SSB.
基金This work is supported by National Key R&D Program(2018YFB0904600).
文摘With the development of power electronic technologies and distributed power generation,DC distribution networks attract increasing attention due to their various advantages compared with traditional AC distribution networks.However,DC fault protection is one of the major issues in DC distribution networks.To improve their reliability and protect the semiconductor devices under DC faults,a current-limiting and energy-transferring DC circuit breaker topology is proposed in this paper.By applying passive components and thyristors,the proposed topology is capable of quickly limiting the fault current and transferring the faulty energy.The working principle,mathematical model and parameter designing method of the proposed topology are presented in this paper.The simulation results verify that the proposed DC circuit breaker could effectively limit the fault current and quickly interrupt the fault current.Cost and conduction power loss evaluation proves the practicality of the proposed topology in medium-voltage DC distribution networks.
基金supported by the National Key R&D Program of China(No.2018YFB0904600)the National Natural Science Foundation of China(No.51777072)
文摘The high-voltage direct current(HVDC)circuit breaker is becoming popular with the rapid development of the flexible HVDC grid for efficient DC fault ride-through purposes.This paper proposes a novel module for reciprocating HVDC circuit breaker topology,whose branch connections are able to switch between series and parallel modes to limit the rising rate and interrupt the DC fault currents.Diode-bridge submodules(DBSMs)are used to compose the main branch for current interruption.Besides fault clearance,the proposed topology has the advantageous function of DC fault current limiting by employing DBSMs with bi-directional conduction capability.The topology can easily switch among branch connection modes through the assembled trans-valves,and their resistance and reactance are very small in the normal state when branches are in parallel and the values become promptly large in the transient state when the branches are series connected.With the modular design,it is easy to change the number of branches or sub-modules and the types of sub-modules to adapt to more specific needs.A 6-terminal modular multi-level converter(MMC)based HVDC grid is established in PSCAD/EMTDC,and various simulation scenarios are carried out to validate the proposed topology.
基金supported by State Grid Science and Technology Projects(SGTYHT/17-JS-199)National Natural Science Foundation of China(51577163).
文摘The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial applications.In this study,two objectives with the same dimensional measurement unit,namely,the total capital investment cost of FCLs and circuit breaker loss related to short-circuit currents,are considered.The circuit breaker loss model is developed based on the attenuation rule of the circuit breaker service life.The circuit breaker loss is used to quantify the current-limiting effect to avoid the problem of weight selection in a multi-objective problem.The IEEE 10-generator 39-bus system in New England is used to evaluate the performance of the proposed genetic algorithm(GA)method.Comparative and sensitivity analyses are performed.The results of the optimized plan are validated through simulations,indicating the significant potential of the GA for such optimization.
基金This work was supported in part by FLEXIS.FLEXIS is part-funded by the European Regional Development Fund(ERDF),through the Welsh Government(WEFO case number 80836)The work was also supported in part by the UK EPSRC Sustainable urban power supply through intelligent control and enhanced restoration of AC/DC networks,under Grant EP/T021985/1in part by the National Nature Science Foundation of China(Grant No.52272403)。
文摘DC technologies will be essential building blocks for future DC distribution networks.As in any DC system,these networks will face crucial threats imposed by short-circuit DC faults.Protection is thus of great interest,and it will likely rely on DC circuit breakers(DCCBs).Among available configurations,Z-source solid-state circuit breakers(Z-SSCBs)are promising candidates for protecting low and medium-voltage distribution networks,as well as DC equipment due to their structural and control simplicity and low cost.In this paper,start-ofthe-art of Z-SSCBs topologies is reviewed.To set the context,the use of DC technologies for grid integration of renewables,DC power transmission,and the main types of DCCBs to protect DC transmission and distribution corridors are discussed.The Z-SSCB topologies are then classified into unidirectional and bidirectional.Advantages and disadvantages of different configurations are compared and analyzed based on existing research.Finally,a perspective on the future development of Z-SSCBs is discussed and potential challenges are elucidated.
文摘直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。