A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect o...A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell(SOFC) performance was investigated. A finer GDC powder(i.e., ultra-high surface area), a higher sintering temperature(1290℃), and a larger amount of sintering aid(12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of(Zr, Ce)O2 and/or excess cobalt grain boundaries(GBs) at higher sintering temperatures with a large amount of sintering aid(i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer.展开更多
The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs )over the last two decades are reviewed. The criteria for the application of materials as interconnects ar...The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs )over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in promoting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.展开更多
Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we rep...Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we report our findings on the effect of a thin film coating of La0.85Sr0.15MnO3-δ (LSM) on the performance of a porous La0.6Sr0.4Co0.2Feo.8O3-δ(LSCF) cathode. When the thicknesses of the LSM coatings are appropriate, an LSM-coated LSCF electrode showed better stability and lower polarization (or higher activity) than the blank LSCF cathode without LSM infiltration. An anode-supported cell with an LSM-infiltrated LSCF cathode demonstrated at 825 ℃ a peak power density of -1.07 W/cm2, about 24% higher than that of the same cell without LSM infiltration (-0.86 W/cm2). Further, the LSM coating enhanced the stability of the electrode; there was little degradation in performance for the cell with an LSM-infiltrated LSCF cathode during 100 h operation.展开更多
Herein,we report the synthesis of a Dy-Gd co-doped cubic phase-stabilized Bi_(2)O_(3) solid electrolyte system via solid-state processing under atmospheric conditions.Doping with Dy^(3+) and Gd^(3+) has been observed ...Herein,we report the synthesis of a Dy-Gd co-doped cubic phase-stabilized Bi_(2)O_(3) solid electrolyte system via solid-state processing under atmospheric conditions.Doping with Dy^(3+) and Gd^(3+) has been observed to significantly enhance the densification process during sintering for stabilization purposes,thereby improving the electrical properties of δ-Bi_(2)O_(3)-type polymorphs.The synthesized ceramics were characterized using X-ray diffraction(XRD),field emission scanning electron microscopy-energy dispersive X-ray spectroscopy(FESEM-EDX),thermal gravimetry/differential thermal analysis(TG/DTA),and the four-point probe technique(4PPT).XRD analysis reveals that the samples Bi_(1-x-y)Gd_(x)Dy_(y)O_(1.5)(y=0.05/x=0.05,0.10,0,15,and 0.20,and x=0.05/y=0.10,0.15,and 0.20) exhibit a stable face-centered cubic δ-phase and a mixed-phase crystallographic structure.The XRD analysis of the stabilized δ-phase suggests that the prepared oxides show a face-centered cubic(FCC) structure with a space group of Fm-3m.FESEM micrographs reveal that the composition Bi_(0.90)Gd_(0.05)Dy_(0.05)O_(1.5) has no significant holes.Nevertheless,an evident increase in the pore formation is observed as the amount of Gd_(2)O_(3) increases until it reaches 20%.This finding suggests that dense pellets are formed during the sintering process at 900-1000℃.The DTA analyses were performed to verify the phase stability,which agrees with the XRD results.The electrochemical performance of the synthesized Dy-Gd co-doped Bi_(2)O_(3)solid electrolyte system was evaluated and analyzed in detail by using the electrochemical impedance spectroscopy(EIS) technique,Based on EIS and conductivity measurements,Bi_(0.75)Gd_(0.20)Dy_(0.05)O_(1.5) exhibits the lowest activation energy of 0.519 eV and the highest conductivity value of 0.398 S/cm at 627℃compared to the other samples;this composition can be used as a solid electrolyte for intermediatetemperature solid oxide fuel cells(SOFCs).展开更多
Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commerc...Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commercial applications, but it still faces many problems which hamper large-scale commercial applications of SOFC. To reduce the cost of SOFC, intermediate temperature solid oxide fuel cell (IT-SOFC) is presently under rapid development. The status of IT-SOFC was reviewed with emphasis on discussion of their component materials. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
Solution infiltration is a popular technique for the surface modification of solid oxide fuel cell(SOFC)cathodes.However,the synthesis of nanostructured SOFC cathodes by infiltration is a tedious process that often re...Solution infiltration is a popular technique for the surface modification of solid oxide fuel cell(SOFC)cathodes.However,the synthesis of nanostructured SOFC cathodes by infiltration is a tedious process that often requires several infiltration and high temperature(≥500℃)calcination cycles.Moreover,fabricating large-area nanostructured cathodes via infiltration still requires serious attention.Here,we propose a facile and scalable urea assisted ultrasonic spray infiltration technique for nanofabrication of SOFC cathodes.It is demonstrated that by using urea as a precipitating agent,the calcination after each infiltration cycle can be omitted and the next infiltration can be performed just after a drying step(≤100℃).Finally,the precipitates can be converted into a desired catalyst phase in single calcination thus,a nanostructured cathode can be fabricated in a much faster manner.It is also shown that the low calcination temperature of the cathode(≤900℃)can produce highly durable SOFC performance even without employing a Ce_(0.9)Gd_(0.1)O_(2)(GDC)diffusion barrier layer which provides the ease of SOFC fabrication.While coupling with an ultrasonic spray technique,the urea assisted infiltration can be scaled up for any desired cathode area.La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3) nanolayered cathode was fabricated and it was characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),and transmission electron microscopy(TEM)techniques.SEM showed the formation of a nanolayer cathode just after 5 cycles of the urea assisted infiltration while the XRD and TEM confirmed the phase and stoichiometric uniformity of the 100 nm cathode nanolayer.The effectiveness of the newly developed technique was further verified by the stable operation of a GDC buffer layer free SOFC having an active cathode area of 25 cm^(2) during a 1200 h durability test.The research outcomes propose urea assisted ultrasonic spray infiltration as a facile,scalable,and commercially viable method for the fabrication of durable nanostructured SOFC cathodes.展开更多
Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There w...Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs.展开更多
Due to the depletion of traditional fossil fuels and the aggravation of related environmental problems,hydrogen energy is gaining more attention all over the world.Solid oxide fuel cell(SOFC)is a promising power gener...Due to the depletion of traditional fossil fuels and the aggravation of related environmental problems,hydrogen energy is gaining more attention all over the world.Solid oxide fuel cell(SOFC)is a promising power generation technology operating on hydrogen with a high efficiency.To further boost the power output of a single cell and thus a single stack,increasing the cell area is an effective route.However,it was recently found that further increasing the effective area of an SOFC single cell with a flat-tubular structure and symmetric double-sided cathodes would result in a lower areal performance.In this work,a multi-physical model is built to study the effect of the effective area on the cell performance.The distribution of different physical fields is systematically analyzed.Optimization of the cell performance is also pursued by systematically tuning the cell operating condition and the current collection setup.An improvement of 42%is revealed by modifying the inlet gas flow rates and by enhancing the current collection.In the future,optimization of cell geometry will be performed to improve the homogeneity of different physical fields and thus to improve the stability of the cell.展开更多
BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anod...BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anode for solid oxide fuel cells(SOFCs)with on-cell dry reforming of methane(DRM).The whole pore surface of the scaffold is covered by small BCFN particles formed by BCFN solution impregnation;the large pores near the scaffold surface are filled by BCFN aerogels with a high specific surface area produced by BCFN suspension impregnation,which act as a catalytic layer for on-cell DRM.After reduction,the anode consists of a Ni–GDC scaffold and BCFN particles with exsolved FeNi3 nanoparticles.This BCFN-impregnated Ni–GDC anode has higher electrical conductivity,electrochemical activity,and resistance to carbon deposition,with which the cell shows maximum power densities between 1.44 and 0.92 W·cm^(−2) when using H_(2) and between 1.09 and 0.50 W·cm^(−2) when using CO_(2)–CH_(4) at temperatures ranging from 750 to 600℃.A stable performance at 400 mA·cm^(−2) and 700℃is achieved using 45%CO_(2)–45%CH_(4)–10%N_(2) for more than 400 h without carbon deposition,benefiting from the impregnated BCFN aerogel with a high specific surface area and water adsorbability.展开更多
Nb-doped SrFeO_(3−δ)(SFO)is used as a cathode in proton-conducting solid oxide fuel cells(H-SOFCs).First-principles calculations show that the SrFe0.9Nb0.1O_(3−δ)(SFNO)cathode has a lower energy barrier in the catho...Nb-doped SrFeO_(3−δ)(SFO)is used as a cathode in proton-conducting solid oxide fuel cells(H-SOFCs).First-principles calculations show that the SrFe0.9Nb0.1O_(3−δ)(SFNO)cathode has a lower energy barrier in the cathode reaction for H-SOFCs than the Nb-free SrFeO_(3−δ)cathode.Subsequent experimental studies show that Nb doping substantially enhances the performance of the SrFeO_(3−δ)cathode.Then,oxygen vacancies(VO)were introduced into SFNO using the microwave sintering method,further improving the performance of the SFNO cathode.The mechanism behind the performance improvement owing to VO was revealed using first-principles calculations,with further optimization of the SFNO cathode achieved by developing a suitable wet chemical synthesis route to prepare nanosized SFNO materials.This method significantly reduces the grain size of SFNO compared with the conventional solid-state reaction method,although the solid-state reaction method is generally used for preparing Nb-containing oxides.As a result of defect engineering and synthesis approaches,the SFNO cathode achieved an attractive fuel cell performance,attaining an output of 1764 mW·cm−2 at 700℃ and operating for more than 200 h.The manipulation of Nb-doped SrFeO_(3−δ)can be seen as a“one stone,two birds”strategy,enhancing cathode performance while retaining good stability,thus providing an interesting approach for constructing high-performance cathodes for H-SOFCs.展开更多
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and as...The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and assisting three dual-fuel(DF)diesel/LNG generator sets.LNG consumption and emissions are estimated both for the SOFC plant and DF generator sets.It results that the use of LNG-SOFC plant in comparison to DF generator sets allows to limit significantly the SO_(x),CO,NO_(x),PM emissions and to reduce the emission of CO_(2)by about 11%.A prediction of the weight and volume of the SOFC plant is conducted and a preliminary modification of the general arrangement of the cruise ship is suggested,according to the latest international rules.It results that the SOFC plant is heavier and occupies more volume on board than a DF gen-set;nevertheless,these features do not affect the floating and the stability of the cruise ship.展开更多
Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operat...Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012013782)research funds of Changwon National University in 20122013
文摘A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell(SOFC) performance was investigated. A finer GDC powder(i.e., ultra-high surface area), a higher sintering temperature(1290℃), and a larger amount of sintering aid(12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of(Zr, Ce)O2 and/or excess cobalt grain boundaries(GBs) at higher sintering temperatures with a large amount of sintering aid(i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer.
文摘The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs )over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in promoting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.
基金supported by the Department of Energy (National Energy Technology Laboratory) SECA Core Technology Program under Award Number DE-NT0006557 and DE-FE0009652by NSFC under grant No.51002182
文摘Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we report our findings on the effect of a thin film coating of La0.85Sr0.15MnO3-δ (LSM) on the performance of a porous La0.6Sr0.4Co0.2Feo.8O3-δ(LSCF) cathode. When the thicknesses of the LSM coatings are appropriate, an LSM-coated LSCF electrode showed better stability and lower polarization (or higher activity) than the blank LSCF cathode without LSM infiltration. An anode-supported cell with an LSM-infiltrated LSCF cathode demonstrated at 825 ℃ a peak power density of -1.07 W/cm2, about 24% higher than that of the same cell without LSM infiltration (-0.86 W/cm2). Further, the LSM coating enhanced the stability of the electrode; there was little degradation in performance for the cell with an LSM-infiltrated LSCF cathode during 100 h operation.
文摘Herein,we report the synthesis of a Dy-Gd co-doped cubic phase-stabilized Bi_(2)O_(3) solid electrolyte system via solid-state processing under atmospheric conditions.Doping with Dy^(3+) and Gd^(3+) has been observed to significantly enhance the densification process during sintering for stabilization purposes,thereby improving the electrical properties of δ-Bi_(2)O_(3)-type polymorphs.The synthesized ceramics were characterized using X-ray diffraction(XRD),field emission scanning electron microscopy-energy dispersive X-ray spectroscopy(FESEM-EDX),thermal gravimetry/differential thermal analysis(TG/DTA),and the four-point probe technique(4PPT).XRD analysis reveals that the samples Bi_(1-x-y)Gd_(x)Dy_(y)O_(1.5)(y=0.05/x=0.05,0.10,0,15,and 0.20,and x=0.05/y=0.10,0.15,and 0.20) exhibit a stable face-centered cubic δ-phase and a mixed-phase crystallographic structure.The XRD analysis of the stabilized δ-phase suggests that the prepared oxides show a face-centered cubic(FCC) structure with a space group of Fm-3m.FESEM micrographs reveal that the composition Bi_(0.90)Gd_(0.05)Dy_(0.05)O_(1.5) has no significant holes.Nevertheless,an evident increase in the pore formation is observed as the amount of Gd_(2)O_(3) increases until it reaches 20%.This finding suggests that dense pellets are formed during the sintering process at 900-1000℃.The DTA analyses were performed to verify the phase stability,which agrees with the XRD results.The electrochemical performance of the synthesized Dy-Gd co-doped Bi_(2)O_(3)solid electrolyte system was evaluated and analyzed in detail by using the electrochemical impedance spectroscopy(EIS) technique,Based on EIS and conductivity measurements,Bi_(0.75)Gd_(0.20)Dy_(0.05)O_(1.5) exhibits the lowest activation energy of 0.519 eV and the highest conductivity value of 0.398 S/cm at 627℃compared to the other samples;this composition can be used as a solid electrolyte for intermediatetemperature solid oxide fuel cells(SOFCs).
基金the National Basic Research Program of China(No.2007CB936201)the National High Technology Research and Development Program of China(863 Program)(No.2006AAO3Z351)the Major International(Regional)Joint Research Program of China(No.50620120439,2006DFB51000).
文摘Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commercial applications, but it still faces many problems which hamper large-scale commercial applications of SOFC. To reduce the cost of SOFC, intermediate temperature solid oxide fuel cell (IT-SOFC) is presently under rapid development. The status of IT-SOFC was reviewed with emphasis on discussion of their component materials. 2008 University of Science and Technology Beijing. All rights reserved.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(20203030030020,20203030030080,20213030030150)。
文摘Solution infiltration is a popular technique for the surface modification of solid oxide fuel cell(SOFC)cathodes.However,the synthesis of nanostructured SOFC cathodes by infiltration is a tedious process that often requires several infiltration and high temperature(≥500℃)calcination cycles.Moreover,fabricating large-area nanostructured cathodes via infiltration still requires serious attention.Here,we propose a facile and scalable urea assisted ultrasonic spray infiltration technique for nanofabrication of SOFC cathodes.It is demonstrated that by using urea as a precipitating agent,the calcination after each infiltration cycle can be omitted and the next infiltration can be performed just after a drying step(≤100℃).Finally,the precipitates can be converted into a desired catalyst phase in single calcination thus,a nanostructured cathode can be fabricated in a much faster manner.It is also shown that the low calcination temperature of the cathode(≤900℃)can produce highly durable SOFC performance even without employing a Ce_(0.9)Gd_(0.1)O_(2)(GDC)diffusion barrier layer which provides the ease of SOFC fabrication.While coupling with an ultrasonic spray technique,the urea assisted infiltration can be scaled up for any desired cathode area.La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3) nanolayered cathode was fabricated and it was characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),and transmission electron microscopy(TEM)techniques.SEM showed the formation of a nanolayer cathode just after 5 cycles of the urea assisted infiltration while the XRD and TEM confirmed the phase and stoichiometric uniformity of the 100 nm cathode nanolayer.The effectiveness of the newly developed technique was further verified by the stable operation of a GDC buffer layer free SOFC having an active cathode area of 25 cm^(2) during a 1200 h durability test.The research outcomes propose urea assisted ultrasonic spray infiltration as a facile,scalable,and commercially viable method for the fabrication of durable nanostructured SOFC cathodes.
基金Funded by the National Natural Science Foundation of China(No.20576063)the 973 Project of Ministry of Science and Technology in China(No.T2000026410)
文摘Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs.
基金the National Natural Science Foundation of China(Grant Nos.11802106,11932005,U20A20251,and 52102226)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.GJHZ20220913143009017)the Development and Reform Commission of Shenzhen Municipality,China(Grant No.XMHT20220103004).
文摘Due to the depletion of traditional fossil fuels and the aggravation of related environmental problems,hydrogen energy is gaining more attention all over the world.Solid oxide fuel cell(SOFC)is a promising power generation technology operating on hydrogen with a high efficiency.To further boost the power output of a single cell and thus a single stack,increasing the cell area is an effective route.However,it was recently found that further increasing the effective area of an SOFC single cell with a flat-tubular structure and symmetric double-sided cathodes would result in a lower areal performance.In this work,a multi-physical model is built to study the effect of the effective area on the cell performance.The distribution of different physical fields is systematically analyzed.Optimization of the cell performance is also pursued by systematically tuning the cell operating condition and the current collection setup.An improvement of 42%is revealed by modifying the inlet gas flow rates and by enhancing the current collection.In the future,optimization of cell geometry will be performed to improve the homogeneity of different physical fields and thus to improve the stability of the cell.
基金financially supported by the National Natural Science Foundation of China(Nos.52072134,52302255,and 52272205)the Key Research and Development Programs of Hubei Province(Nos.2021BCA149 and 2022BAA087)+1 种基金the Natural Science Foundation of Hubei Province(No.2021CFA072)the Special Fund for Science and Technology Innovation Teams of Shanxi Province(No.202304051001007).
文摘BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anode for solid oxide fuel cells(SOFCs)with on-cell dry reforming of methane(DRM).The whole pore surface of the scaffold is covered by small BCFN particles formed by BCFN solution impregnation;the large pores near the scaffold surface are filled by BCFN aerogels with a high specific surface area produced by BCFN suspension impregnation,which act as a catalytic layer for on-cell DRM.After reduction,the anode consists of a Ni–GDC scaffold and BCFN particles with exsolved FeNi3 nanoparticles.This BCFN-impregnated Ni–GDC anode has higher electrical conductivity,electrochemical activity,and resistance to carbon deposition,with which the cell shows maximum power densities between 1.44 and 0.92 W·cm^(−2) when using H_(2) and between 1.09 and 0.50 W·cm^(−2) when using CO_(2)–CH_(4) at temperatures ranging from 750 to 600℃.A stable performance at 400 mA·cm^(−2) and 700℃is achieved using 45%CO_(2)–45%CH_(4)–10%N_(2) for more than 400 h without carbon deposition,benefiting from the impregnated BCFN aerogel with a high specific surface area and water adsorbability.
基金the National Natural Science Foundation of China(Nos.52302314 and 12274361).
文摘Nb-doped SrFeO_(3−δ)(SFO)is used as a cathode in proton-conducting solid oxide fuel cells(H-SOFCs).First-principles calculations show that the SrFe0.9Nb0.1O_(3−δ)(SFNO)cathode has a lower energy barrier in the cathode reaction for H-SOFCs than the Nb-free SrFeO_(3−δ)cathode.Subsequent experimental studies show that Nb doping substantially enhances the performance of the SrFeO_(3−δ)cathode.Then,oxygen vacancies(VO)were introduced into SFNO using the microwave sintering method,further improving the performance of the SFNO cathode.The mechanism behind the performance improvement owing to VO was revealed using first-principles calculations,with further optimization of the SFNO cathode achieved by developing a suitable wet chemical synthesis route to prepare nanosized SFNO materials.This method significantly reduces the grain size of SFNO compared with the conventional solid-state reaction method,although the solid-state reaction method is generally used for preparing Nb-containing oxides.As a result of defect engineering and synthesis approaches,the SFNO cathode achieved an attractive fuel cell performance,attaining an output of 1764 mW·cm−2 at 700℃ and operating for more than 200 h.The manipulation of Nb-doped SrFeO_(3−δ)can be seen as a“one stone,two birds”strategy,enhancing cathode performance while retaining good stability,thus providing an interesting approach for constructing high-performance cathodes for H-SOFCs.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
文摘The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and assisting three dual-fuel(DF)diesel/LNG generator sets.LNG consumption and emissions are estimated both for the SOFC plant and DF generator sets.It results that the use of LNG-SOFC plant in comparison to DF generator sets allows to limit significantly the SO_(x),CO,NO_(x),PM emissions and to reduce the emission of CO_(2)by about 11%.A prediction of the weight and volume of the SOFC plant is conducted and a preliminary modification of the general arrangement of the cruise ship is suggested,according to the latest international rules.It results that the SOFC plant is heavier and occupies more volume on board than a DF gen-set;nevertheless,these features do not affect the floating and the stability of the cruise ship.
基金Projects(51076027,51036002) supported by the National Natural Science Foundation of ChinaProject(20090092110051) supported by the Doctoral Fund of Ministry of Education of China
文摘Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region.