期刊文献+
共找到543篇文章
< 1 2 28 >
每页显示 20 50 100
Physical and Electrochemical Characterization of LiCo0.8M0.2O2 (M=Ni,Zr) Cathode Films for All-solid-state Rechargeable Thin-film Lithium Batteries 被引量:1
1
作者 李驰麟 刘文元 傅正文 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第6期493-498,共6页
用射频磁控溅射结合传统退火的方法制备LiCo0.8M0.2O2 (M=Ni,Zr)阴极薄膜.X射线衍射、拉曼光谱、扫描电子显微镜等手段表征了不同掺杂的LiCo0.8M0.2O2薄膜.结果显示,700℃退火的LiCo0.8M0.2O2薄膜具有类似α-NaFeO2的层状结构.通过... 用射频磁控溅射结合传统退火的方法制备LiCo0.8M0.2O2 (M=Ni,Zr)阴极薄膜.X射线衍射、拉曼光谱、扫描电子显微镜等手段表征了不同掺杂的LiCo0.8M0.2O2薄膜.结果显示,700℃退火的LiCo0.8M0.2O2薄膜具有类似α-NaFeO2的层状结构.通过对不同掺杂锂钴氧阴极的全固态薄膜锂电池Li/LiPON/LiCo0.8M0.2O2的电化学性能研究表明,电化学活性元素Ni的掺杂使全固态电池具有更大的放电容量(56μAh/cm2μm),而非电化学活性元素Zr的掺杂使全固态电池具有更好的循环稳定性. 展开更多
关键词 阴极材料 全固态薄膜电池 射频磁控溅射
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
2
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-Ion batteries Battery Construction Battery Characteristics Energy Storage Electrochemical Cells Anode Materials Cathode Materials state of Charge (SOC) Depth of Discharge (DOD) solid Electrolyte Interface (SEI)
下载PDF
All-solid-state lithium batteries with inorganic solid electrolytes:Review of fundamental science 被引量:10
3
作者 姚霞银 黄冰心 +5 位作者 尹景云 彭刚 黄祯 高超 刘登 许晓雄 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期212-225,共14页
The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabric... The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabrication, and evaluation. The challenges and prospects are outlined as well. 展开更多
关键词 all-solid-state lithium batteries inorganic solid electrolytes interface phenomena rechargeablelithium batteries
下载PDF
CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life 被引量:7
4
作者 Qiang Zhang Ning Huang +3 位作者 Zhen Huang Liangting Cai Jinghua Wu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期151-155,I0006,共6页
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite fo... The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention. 展开更多
关键词 CNTs@S composite All-solid-state lithium-sulfur battery Electronic conduction network Interfacial contact Ultralong cycle life
下载PDF
Poly(carbonate)-based ionic plastic crystal fast ion-conductor for solid-state rechargeable lithium batteries 被引量:1
5
作者 He Zhou Jiaying Xie +3 位作者 Lixia Bao Sibo Qiao Jiefei Sui Jiliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期360-369,I0009,共11页
Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial re... Liquid plasticizers with a relatively higher dielectric coefficient like ethylene carbonate(EC),propylene carbonate(PC),and ethyl methyl carbonate(EMC) are the most commonly used electrolyte materials in commercial rechargeable lithium batteries(LIBs) due to their outstanding dissociation ability to lithium salts.However,volatility and fluidity result in their inevitable demerits like leakage and potential safety problem of the final LIBs.Here we for the first time device a subtle method to prepare a novel thermal-stable and non-fluid poly(carbonate) solid-state electrolyte to merge EC with lithium carriers.To this aim,a series of carbonate substituted imidazole ionic plastic crystals(G-NTOC) with different polymerization degrees have been synthesized.The resulting G-NTOC shows an excellent solid-state temperature window(R.T.-115℃).More importantly,the maximum ionic conductivity and lithium transference number of the prepared G-NTOC reach 0.36 × 10^(-3) S cm^(-1) and 0.523 at 30℃,respectively.Galvanostatic cycling test results reveal that the developed G-NTOC solid-state electrolytes are favorable to restraining the growth of lithium dendrite due to the excellent compatibility between the electrode and the produced plastic crystal electrolyte.The fabricated LiIG-NTOCILiFeP04 all-solid-state cell initially delivers a maximum discharge capacity of 152.1 mAh g^(-1) at the discharge rate of 0.1 C.After chargingdischarging the cell for 60 times,Coulombic efficiency of the solid-state cell still exceeds 97%.Notably,the LiIG-NTOCILiFeP04 cell can stably light a commercial LED with a rated power of 0.06 W for more than1 h at 30℃,and the output power nearly maintains unchanged with the charging-discharging cycling test,implying a sizeable potential application in the next generation of solid-state LIBs. 展开更多
关键词 POLYCARBONATE Ionic plastic crystal solid state electrolyte Fast ion conductor Rechargeable lithium batteries
下载PDF
Solid-State Electrolytes for Lithium-Sulfur Batteries 被引量:1
6
作者 Zhang Huiming Guo Cheng +2 位作者 Nuli Yanna Yang Jun Wang Jiulin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期565-577,共13页
Secondary lithium-sulfur batteries have attracted extensive attention due to their high energy density,low cost and environment friendly.However,the"shuttle effect"of polysulfides dissolved in liquid electro... Secondary lithium-sulfur batteries have attracted extensive attention due to their high energy density,low cost and environment friendly.However,the"shuttle effect"of polysulfides dissolved in liquid electrolytes leads to a decrease of the cell Coulomb efficiency(CE).Therefore,researchers have used solid electrolytes instead of traditional liquid electrolytes and separators to suppress the"shuttle effect"of polysulfides and the growth of lithium dendrites.The progress in electrolytes for solid-state lithium-sulfur batteries including solid-state polymer,inorganic,and composite electrolytes to solve the issues is summarized. 展开更多
关键词 lithium-sulfur batteries solid-state polymer electrolytes inorganic electrolytes composite electrolytes
下载PDF
Interfacial Issues of All Solid State Lithium Batteries
7
作者 Wang Leidanyang Su Yunmning +4 位作者 Liu Siyang Chen Chunguang Hu Shanming Huang Tao Yu Aishui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期578-589,共12页
All solid state lithium battery is a promising next-generation battery system with improved cycle life,energy density,especially safety.However,its development is greatly hampered by a large impedance between the soli... All solid state lithium battery is a promising next-generation battery system with improved cycle life,energy density,especially safety.However,its development is greatly hampered by a large impedance between the solid state electrolyte/electrode interface.How to build an ideal electrolyte/electrode interface to improve the interfacial stability and reduce the interfacial resistance is a huge challenge for improving battery performance.This paper reviews interfacial problems and introduces the formation mechanism of different interface layers between electrodes and electrolytes.In addition,the strategies for improving interfacial contact and reducing interfacial resistance are described in detail.Finally,the research directions for engineering interfaces in all solid state lithium batteries are proposed. 展开更多
关键词 lithium battery all solid state ELECTROLYTE ELECTRODE interfacial resistance
下载PDF
Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries 被引量:1
8
作者 Yang Zhang Lei Zhang +5 位作者 Peng Guo Chaoyan Zhang Xiaochuan Ren Zhen Jiang Jianjun Song Chuan Shi 《Nano Research》 SCIE EI CSCD 2024年第4期2663-2670,共8页
In order to enhance the ionic conductivity of solid polymer electrolytes(SPEs)and their structural rigidity against lithium dendrite during lithium-ion battery(LIB)cycling,we propose porous garnet Li6.4La3Zr2Al0.2O12(... In order to enhance the ionic conductivity of solid polymer electrolytes(SPEs)and their structural rigidity against lithium dendrite during lithium-ion battery(LIB)cycling,we propose porous garnet Li6.4La3Zr2Al0.2O12(LLZO),as the filler to SPEs.The porous LLZO with interlinked grains was synthesized via a resol-assisted cationic coordinative co-assembly approach.The porous structure of LLZO with high specific surface area facilitates the interaction between polymer and filler and provides sufficient entrance for Li^(+)migration into the LLZO phase.Furthermore,the interconnection of LLZO grains forms continuous inorganic pathways for fast Li^(+)migration,which avoid the multiple diffusion for Li^(+)in interface.As a result,the SPEs with porous LLZO(SPE-PL)show a high ionic conductive of 0.73 mS·cm^(-1) at 30℃ and lithium-ion transference number of 0.40.The porous LLZO with uniformly dispersed pores also acts as an ion distributor to regulate ionic flux.The lithium-symmetrical batteries assembled with SPE-PL show a highly stable Li plating/stripping cycling for nearly 3000 h at 0.1 mA·cm^(-2).The corresponding Li/LiFePO_(4) batteries also exhibit excellent cyclic performance with capacity retention of 75%after nearly 500 cycles.This work brings new insights into the design of conductive fillers and the optimization of SPEs. 展开更多
关键词 solid polymer electrolytes lithium metal battery porous conductive filler solid state battery
原文传递
LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery 被引量:11
9
作者 Xuelei Li Liubing Jin +5 位作者 Dawei Song Hongzhou Zhang Xixi Shi Zhenyu Wang Lianqi Zhang Lingyun Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期39-45,I0002,共8页
In order to obtain high power density,energy density and safe energy storage lithium ion batteries(LIB)to meet growing demand for electronic products,oxide cathodes have been widely explored in all-solidstate lithium ... In order to obtain high power density,energy density and safe energy storage lithium ion batteries(LIB)to meet growing demand for electronic products,oxide cathodes have been widely explored in all-solidstate lithium batteries(ASSLB)using sulfide solid electrolyte.However,the electrochemical performances are still not satisfactory,due to the high interfacial resistance caused by severe interfacial instability between sulfide solid electrolyte and oxide cathode,especially Ni-rich oxide cathodes,in charge-discharge process.Ni-rich LiNi0.8Co0.1Mn0.1O2(NCM811)material at present is one of the most key cathode candidates to achieve the high energy density up to 300 Wh kg^-1 in liquid LIB,but rarely investigated in ASSLB using sulfide electrolyte.To design the stable interface between NCM811 and sulfide electrolyte should be extremely necessary.In this work,in view of our previous work,LiNbO3 coating with about 1 wt% content is adopted to improve the interfacial stability and the electrochemical performances of NCM811 cathode in ASSLB using Li10GeP2S12 solid electrolyte.Consequently,LiNbO3-coated NCM811 cathode displays the higher discharge capacity and rate performance than the reported oxide electrodes in ASSLB using sulfide solid electrolyte to our knowledge. 展开更多
关键词 All-solid-state lithium battery Sulfide electrolyte LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 LiNbO_3 Electrochemical performances
下载PDF
Lithium-ion transport in inorganic solid state electrolyte 被引量:2
10
作者 高健 赵予生 +1 位作者 施思齐 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期139-173,共35页
An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of t... An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state elec- trolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. 展开更多
关键词 lithium-ion batteries solid state electrolyte ionic conductivity ion transport mechanism
下载PDF
Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly (ethylene glycol) matrix and its application for solid state lithium battery 被引量:1
11
作者 Bing Yuan Guangmei Luo +3 位作者 Jing Liang Fangyi Cheng Wangqing Zhang Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期55-59,共5页
A facile one-pot synthesis of solid polymer electrolytes(SPEs), composed of carbonate terminated poly(ethylene glycol)(CH3O-PEG-IC), poly(ethylene glycol)-block-polystyrene(PEG-b-PS) block copolymer nanoparticles cont... A facile one-pot synthesis of solid polymer electrolytes(SPEs), composed of carbonate terminated poly(ethylene glycol)(CH3O-PEG-IC), poly(ethylene glycol)-block-polystyrene(PEG-b-PS) block copolymer nanoparticles containing a conductive PEG corona, fumed SiO2 and Li TFSI salt via polymerization-induced self-assembly is proposed. This method to prepare SPEs has the advantages of one-pot convenient synthesis, avoiding use of organic solvent and conveniently adding inorganic additives. CH3O-PEG-IC combines advantages of PEG and polycarbonate, the in situ synthesized PEG-b-PS nanoparticles containing a rigid polystyrene(PS) core and a PEG corona guarantee continuous lithium ion transport in the synthesized SPEs, and the fumed SiO2 optimizes the interfacial properties and improves the electrochemical stability, all of which afford SPEs a well considerable room temperature ionic conductivity of 1.73 × 10^-4S/cm, high lithium transference number of 0.53, and wide electrochemical stability window of 5.5 V(vs. Li^+/Li). By employing these SPEs, the assembled solid state cells of Li FePO4 |SPEs|Li exhibit considerable cell performance. 展开更多
关键词 solid polymer ELECTROLYTE Polymerization-induced SELF-ASSEMBLY solid-state lithium battery
下载PDF
Thin-film lithium-ion battery derived from Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3 sintered pellet
12
作者 肖卓炳 麻明友 +2 位作者 吴显明 何则强 陈上 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期281-285,共5页
Thin-film lithium-ion battery of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 was fabricated using Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and electrolyte. Li1.3Al0.3Ti1.7(PO4)3 sintered pellet was prepared b... Thin-film lithium-ion battery of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 was fabricated using Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and electrolyte. Li1.3Al0.3Ti1.7(PO4)3 sintered pellet was prepared by sol-gel technique, and the thin-film battery was heat-treated by rapid thermal annealing. Phase identification, morphology and electrochemical properties of the components and thin-film battery were investigated by X-ray diffractometry, scanning electron microscopy, electrochemical impedance spectroscopy and galvanostatic charge-discharge experiments. The results show that Li1.3Al0.3Ti1.7(PO4)3 possesses a electrochemical window of 2.4 V and an ionic conductivity of 1.2 ×10-4 S/cm. With Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and solid electrolyte, the fabricated thin-film battery with an open circuit voltage of 1.2V can be easily cycled. 展开更多
关键词 固体电解质 锂离子电池 烧结球粒 LIMN2O4 Li1.3Al0.3Ti1.7(PO4)3
下载PDF
Reaction mechanisms for 0.5Li_2MnO_3 ·0.5LiMn_(0.5)Ni_(0.5)O_2 precursor prepared by low-heating solid state reaction 被引量:2
13
作者 Dong Li Fang Lian +1 位作者 Xin-mei Hou Kuo-chih Chou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期856-862,共7页
Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing p... Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm. 展开更多
关键词 lithium batteries ELECTRODE manganese oxide solid state reactions CALCINATION
下载PDF
Forming solid electrolyte interphase in situ in an ionic conducting Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3-polypropylene(PP) based separator for Li-ion batteries 被引量:6
14
作者 吴娇杨 凌仕刚 +3 位作者 杨琪 李泓 许晓雄 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期103-107,共5页
A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and... A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries. 展开更多
关键词 solid state lithium batteries solid electrolyte interphase ionic conductor coated separator lithium dendrite
下载PDF
Synthesis and electrochemical performance of 5V spinel LiNi_(0.5)Mn_(1.5)O_4 prepared by solid-state reaction 被引量:5
15
作者 孙强 李新海 +1 位作者 王志兴 季勇 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第1期176-181,共6页
Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a prec... Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a precursor via a low-temperature solid-state route, then the precursor was reacted with Li2CO3 to synthesize LiNi0.5Mn1.5O4. The effects of calcination temperature and time on the physical properties and electrochemical performance of the products were investigated. Samples were characterized by thermal gravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray diffractometry(XRD), charge-discharge tests and cyclic voltammetry measurements. Scanning electron microscopy(SEM) image shows that as calcination temperature and time increase, the crystallinity of the samples is improved, and their grain sizes are obviously increased. It is found that LiNi0.5Mn1.5O4 calcined at 800 ℃ for 6 h exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the sample obtained possesses high capacity and excellent rate capability. When being discharged at a rate as high as 5C after 30 cycles, the as-prepared LiNi0.5Mn1.5O4 powders can still deliver a capacity of 101 mA·h/g, which shows to be a potential cathode material for high power batteries. 展开更多
关键词 LINI0.5MN1.5O4 热处理 固相反应法 金属热处理
下载PDF
Electrochemical properties of spinel LiMn_2O_4 and LiAl_(0.1)Mn_(1.9)O_(3.9)F_(0.1) synthesized by solid-state reaction 被引量:6
16
作者 Tao Li Weihua Qiu +1 位作者 Hailei Zhao Jingjing Liu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第2期187-191,共5页
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with ... Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples. 展开更多
关键词 lithium-ion batteries positive materials LIMN2O4 solid-state reaction electrochemical properties DOPING
下载PDF
Preparation of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 powders for cathode material in secondary battery by solid-state method 被引量:1
17
作者 PARK Sook Hee KANG Chan Hyoung 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期184-188,共5页
Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the s... Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane. 展开更多
关键词 lithium ion battery cathode materials layered structure solid-state method discharge density
下载PDF
A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries 被引量:2
18
作者 Linnan Bi Xiongbang Wei +5 位作者 Yuhong Qiu Yaochen Song Xin Long Zhi Chen Sizhe Wang Jiaxuan Liao 《Nano Research》 SCIE EI CSCD 2023年第1期1717-1725,共9页
Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security.But,its practical application is severely limited by low ioni... Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security.But,its practical application is severely limited by low ionic conductivity and slow Li+transference.Herein,based on the“binary electrolytes”of poly(vinylidene fluoride-chlorotrifluoroethylene)(P(VDF-CTFE))and lithium salt(LiTFSI),a kind of eutectogel hybrid electrolytes(EHEs)with high Li+transference number was developed via tuning the spontaneous coupling of charge and vacated space generated by Li-cation diffusion utilizing the Li6.4La3Zr1.4Ta0.6O12(LLZTO)dopant.LLZTO doping promotes the dissociation of lithium salt,increases Li+carrier density,and boosts ion jumping and the coordination/decoupling reactions of Li+.As a result,the optimized EHEs-10%possess a high Li-transference number of 0.86 and a high Li+conductivity of 3.2×10–4 S·cm–1 at room temperature.Moreover,the prepared EHEs-10%composite solid electrolyte presents excellent lithiumphilic and compatibility,and can be tested stably for 1,200 h at 0.3 mA·cm–2 with assembled lithium symmetric batteries.Likewise,the EHEs-10%films match well with high-loading LiFePO4 and LiCoO2 cathodes(>10 mg·cm–2)and exhibit remarkable interface stability.Particularly,the LiFePO4//EHEs-10%//Li and LiCoO2//EHEs-10%//Li cells deliver high rate performance of 118 mAh·g–1 at 1 C and 93.7 mAh·g–1 at 2 C with coulombic efficiency of 99.3%and 98.1%,respectively.This work provides an in-depth understanding and new insights into our design for polymer electrolytes with fast Li+diffusion. 展开更多
关键词 poly(vinylidene fluoride-chlorotrifluoroethylene)(P(VDF-CTFE)) Li6.4La3Zr1.4Ta0.6O12(LLZTO) ionic transference numbers eutectic solvent composite electrolytes solid state lithium metal battery
原文传递
Challenges in the Development of Film-Forming Additives for Lithium Ion Battery: A Review
19
作者 Yannan Zhang Yingjie Zhang +3 位作者 Shubiao Xia Peng Dong Liying Jin Jinjie Song 《American Journal of Analytical Chemistry》 2013年第6期7-12,共6页
Electrolytes additives are ubiquitous and indispensable in all electrochemical devices. In this sense, the principle and the classification of film-forming additives for lithium ion secondary batteries are described. ... Electrolytes additives are ubiquitous and indispensable in all electrochemical devices. In this sense, the principle and the classification of film-forming additives for lithium ion secondary batteries are described. The film formation mechanism and research progress of the pyrazole derivatives, organic halogenide, esters and derivatives, boron compounds and inorganic compounds are introduced. Emphasis is focused on the principles and film-forming mechanisms of each additive. The development of film-forming additives is forecasted and prospected. 展开更多
关键词 lithium Ion Battery film-Forming ADDITIVES solid ELECTROLYTE INTERPHASE film
下载PDF
Synthesis and ionic conductivity of Li_6La_3BiSnO_(12) with cubic garnet-type structure via solid-state reaction
20
作者 彭红建 肖理红 +1 位作者 曹远尼 栾向峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2883-2886,共4页
The synthesis and transport properties of the Li6La3BiSnO1212 solid electrolyte by a solid-state reaction were reported. The condition to synthesize the Li6La3BiSnO1212 is 785 °C for 36 h in air. The refined latt... The synthesis and transport properties of the Li6La3BiSnO1212 solid electrolyte by a solid-state reaction were reported. The condition to synthesize the Li6La3BiSnO1212 is 785 °C for 36 h in air. The refined lattice constant of Li6La3 BiSnO1212 is 13.007 ?. Qualitative phase analysis by X-ray powder diffraction patterns combined with the Rietveld method reveals garnet type compounds as major phases. The Li-ion conductivity of the prepared Li6La3BiSnO12 is 0.85×10-4 S/cm at 22 °C, which is comparable with that of the Li5La3Bi2O12. The Li6La3BiSnO1212 compounds are chemically stable against Li CoO2 which is widely used as cathode material up to 700 °C but not against the Li Mn2O4 if the temperature is higher than 550 °C. The Li6La3 BiSnO1212 exhibits higher chemical stability than Li5La3Bi2O12, which is due to Sn substitution for Bi. 展开更多
关键词 固相反应 石榴石型 离子导电性 合成 RIETVELD LIMN2O4 锂钴氧化物 化学稳定性
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部