The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\...The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\-3 as a monolayer and the dispersion threshold is 0.31\[\%m\%(K\-2CO\-3)/\%m\%(\%γ\%\|Al\-2O\-3), \%m\%/g\], which is close to the theoretical value calculated by assuming a bidentate vertical dispersion model of CO\-2 on the \%γ\%\|Al\-2O\-3 surface . The SO\-2 adsorption\|capacity on K\-2CO\-3/\%γ\%\|Al\-2O\-3 sample increases with the K\-2CO\-3 loading and reaches an extremum at its threshold. The adsorbent conversion of K\-2CO\-3/\%γ\%\|Al\-2O\-3 at the threshold is up to 72%. When the loading is higher than the threshold, the SO\-2 adsorption capacity decreases at first, then increases again. This phenomenon is caused by the reaction between SO\-2 and the bulk phase of K\-2CO\-3 crystallites. The sample decreases with the loading, and the sample with \{0.10\}\[\%m\%(K\-2CO\-3)/\%m(γ\%\|Al\-2O\-3), \%m\%/g\] loading shows the highest regeneration percentage of 63%. Compared with Na\-2CO\-3/\%γ\%\|Al\-2O\-3, K\-2CO\-3/\%γ\%\|Al\-2O\-3 might have some advantages.展开更多
Activities of FeO in CaO-SiO2-Al2O3-MgO-FeO slags were determined at 1673 K by electrochemical of the solid electrolyte cell: Mo [Mo+MoOu[ZrO2(MgO)[Fe+(CaO-SiO2-Al2O3-MgO-FeO)+Ag[Fe. The influences of slag com...Activities of FeO in CaO-SiO2-Al2O3-MgO-FeO slags were determined at 1673 K by electrochemical of the solid electrolyte cell: Mo [Mo+MoOu[ZrO2(MgO)[Fe+(CaO-SiO2-Al2O3-MgO-FeO)+Ag[Fe. The influences of slag compositions and basicity on FeO activities were analyzed. The results reveal that, for slags of fixed (%CaO)/(%SiO2) ratio, MgO and Al2O3 content, there was an increase of FeO activities with increase of FeO content. For slags with constant {(%CaO)+ (%MgO)}/(%SiO2) ratio, fixed FeO and A1203 content, FeO activities decreased when MgO content increased from 5% to 10%, and increased with the increase of MgO content when it was over 10%. The FeO activities increased when (%CaO)/(%SiO2) ratio changed from 1.03 to 1.30 in the slags of constant MgO, FeO and Al2O3 content.展开更多
A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO ...A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.展开更多
文摘The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\-3 as a monolayer and the dispersion threshold is 0.31\[\%m\%(K\-2CO\-3)/\%m\%(\%γ\%\|Al\-2O\-3), \%m\%/g\], which is close to the theoretical value calculated by assuming a bidentate vertical dispersion model of CO\-2 on the \%γ\%\|Al\-2O\-3 surface . The SO\-2 adsorption\|capacity on K\-2CO\-3/\%γ\%\|Al\-2O\-3 sample increases with the K\-2CO\-3 loading and reaches an extremum at its threshold. The adsorbent conversion of K\-2CO\-3/\%γ\%\|Al\-2O\-3 at the threshold is up to 72%. When the loading is higher than the threshold, the SO\-2 adsorption capacity decreases at first, then increases again. This phenomenon is caused by the reaction between SO\-2 and the bulk phase of K\-2CO\-3 crystallites. The sample decreases with the loading, and the sample with \{0.10\}\[\%m\%(K\-2CO\-3)/\%m(γ\%\|Al\-2O\-3), \%m\%/g\] loading shows the highest regeneration percentage of 63%. Compared with Na\-2CO\-3/\%γ\%\|Al\-2O\-3, K\-2CO\-3/\%γ\%\|Al\-2O\-3 might have some advantages.
基金Project supported by the National Natural Science Foundation of China (Grant No.50574036)
文摘Activities of FeO in CaO-SiO2-Al2O3-MgO-FeO slags were determined at 1673 K by electrochemical of the solid electrolyte cell: Mo [Mo+MoOu[ZrO2(MgO)[Fe+(CaO-SiO2-Al2O3-MgO-FeO)+Ag[Fe. The influences of slag compositions and basicity on FeO activities were analyzed. The results reveal that, for slags of fixed (%CaO)/(%SiO2) ratio, MgO and Al2O3 content, there was an increase of FeO activities with increase of FeO content. For slags with constant {(%CaO)+ (%MgO)}/(%SiO2) ratio, fixed FeO and A1203 content, FeO activities decreased when MgO content increased from 5% to 10%, and increased with the increase of MgO content when it was over 10%. The FeO activities increased when (%CaO)/(%SiO2) ratio changed from 1.03 to 1.30 in the slags of constant MgO, FeO and Al2O3 content.
基金financially supported by the Education Department of Liaoning Province(No.2009A421)
文摘A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.