期刊文献+
共找到10,405篇文章
< 1 2 250 >
每页显示 20 50 100
Mixing characteristics of three-cylinder valve-controlled energy recovery device based on liquid piston
1
作者 Zheng Sun Zean Chen +2 位作者 Weian Li Yue Wang Jing Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期83-91,共9页
The isobaric energy recovery device can significantly reduce the energy consumption of the seawater reverse osmosis system by recycling the residual pressure energy of high-pressure concentrated brine.Three-cylinder v... The isobaric energy recovery device can significantly reduce the energy consumption of the seawater reverse osmosis system by recycling the residual pressure energy of high-pressure concentrated brine.Three-cylinder valve-controlled energy recovery device(TC-ERD)solves the fluid pulsation of traditional two-cylinder devices,but the use of a“liquid piston”exacerbates the mixing between brine and seawater.Herein,the evolutionary law of“liquid piston”and the relationship between volumetric mixing degree and operating conditions are explored.The results show that the“liquid piston”first axially expands and then gradually stabilizes,isolating the brine and seawater.Additionally,as long as the volume utilization ratio(UR)of the pressure exchange cylinder remains constant,there will not be much difference in the volumetric mixing degree after stabilization of the“liquid piston”(Vm-max)regardless of changes in the processing capacity(Q)and cycle time(T0).Therefore,the equation for Vm-max with respect to the operating parameters(Q,T0)is derived,which can not only predict the Vm-max of the TCERD,but also provide an empirical reference for the design of other valve-controlled devices with“liquid piston”.When the Vm-max is 6%,the efficiency of the TC-ERD at design conditions(30 m3$h1,5.0 MPa)is 97.53%. 展开更多
关键词 DESALINATION ENERGY RECOVERY mixing liquid piston
下载PDF
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
2
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
Multistate transition and coupled solid-liquid modeling of motion process of long-runout landslide 被引量:1
3
作者 Yang Gao Yueping Yin +3 位作者 Bin Li Han Zhang Weile Wu Haoyuan Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2694-2714,共21页
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical... The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction. 展开更多
关键词 Long-runout landslide Multistate transition mixed solidliquid flow Post-failure process Numerical simulation
下载PDF
Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
4
作者 汤星舟 叶家耀 +4 位作者 王子烨 姜皓译 尚小虎 杨朝雁 李炳祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期519-524,共6页
The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotrop... The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena. 展开更多
关键词 mixed liquid crystal dielectric anisotropy TUNABLE NEMATIC SMECTIC
下载PDF
Impacts of solid physical properties on the performances of a slurry external airlift loop reactor integrating mixing and separation 被引量:2
5
作者 Tian Zhang Qingshan Huang +3 位作者 Shujun Geng Aqiang Chen Yan Liu Haidong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期1-12,共12页
Solid physical properties are vital for the design, optimization, and scale-up of gas–liquid–solid multiphase reactors. The complex and interactional effects of the solid physical properties, including particle diam... Solid physical properties are vital for the design, optimization, and scale-up of gas–liquid–solid multiphase reactors. The complex and interactional effects of the solid physical properties, including particle diameter, density, wettability, and sphericity, on the hydrodynamic behaviors in a new external airlift loop reactor(EALR) integrating mixing and separation are decoupled in this work. Two semi-empirical equations are proposed and validated to predict the overall gas holdup and liquid circulating velocity satisfactorily, and then the individual influence of such solid physical properties is further investigated. The results demonstrate that both the overall gas holdup in the riser and the liquid circulating velocity in the downcomer increase with the contact angle, but decrease with particle size, density, and sphericity.Additionally, the impact of the particle size on the liquid circulating velocity is also profoundly revealed on a micro-level considering the particle size distribution. Moreover, the axial solid concentration distribution is discussed, and the uniformity of the slurry is described by the mixing index of the solid particles. The results show that a more homogeneous mixture can be achieved by adding finer particles other than attaining violent turbulence. Therefore, this work lays a foundation for the design, scale-up, and industrialization of the EALRs. 展开更多
关键词 Slurry reactor HYDRODYNAMICS Particle mixing solid physical property
下载PDF
HYDRODYNAMICS AND AXIAL MIXING OF LIQUIDSOLID SYSTEM IN OPEN TURBINE ROTATING DISC CONTACTOR
6
作者 陈晓祥 汪鸿涛 +1 位作者 李宽宏 苏元复 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1992年第1期28-38,共11页
The open turbine rotating disc contactor (OTRDC) has been installed simply by adding three narrow strips to the lower surface of each rotating disc in the rotating disc contactor (RDC), so it can be used for the syste... The open turbine rotating disc contactor (OTRDC) has been installed simply by adding three narrow strips to the lower surface of each rotating disc in the rotating disc contactor (RDC), so it can be used for the system with high solid particle content. Hydrodynamics and axial mixing have been investigated in a 0.152m diameter OTRDC of different compartment height for the system of tap water and quartz particles. A model has been developed to describe the flow of liquid and solid phases. The solid phase holdup can be calculated satisfactorily according to the model equations. Axial mixing data have been treated by the backflow model and the correlations for predicting backflow ratios of liquid and solid phases in OTRDC have been presented. 展开更多
关键词 HYDRODYNAMICS AXIAL mixing liquid-solid system COLUMN CONTACTOR
下载PDF
Solid liquid Mixed Casting of Al-Si Alloy 被引量:1
7
作者 Chen, ZH Kang, ZT 《Journal of Central South University》 SCIE EI CAS 2000年第3期133-135,共3页
The paper presents a novel material preparation technology—Solid liquid mixed casting technology. In the technology, large amounts of homogeneous alloy powder or heterogenous powder with perfect wettability are added... The paper presents a novel material preparation technology—Solid liquid mixed casting technology. In the technology, large amounts of homogeneous alloy powder or heterogenous powder with perfect wettability are added into the superheated melt. After strong agitation, the mixed melt can be cast or hot processed. Applying solid liquid mixed casting, three kinds of Al Si alloys were investigated. The results show that, when the mass of powder accession to alloy melt is about 1, the mean size of primary Si in hyper eutectic alloy can be controlled at less than 5 μm; and the mean grain size of α phase in hypo eutectic alloy is less than 10 μm. This technology has the advantage of preparing material with very fine microstructure by fairly simple casting process, and may be a new practicable and valuable metal preparation technology. 展开更多
关键词 solid liquid mixED CASTING powder MELT Document code:A
下载PDF
Hydrodynamics and Solids Mixing Behavior in a Riser with Blunt Internals 被引量:3
8
作者 刘会娥 魏飞 +1 位作者 杨艳辉 金涌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第4期371-376,共6页
The hydrodynamics and solids mixing behavior in a riser with blunt internals are studied. A uniform radial distribution for solids fraction and particle velocity achieves near the internals. The turbulent velocity of ... The hydrodynamics and solids mixing behavior in a riser with blunt internals are studied. A uniform radial distribution for solids fraction and particle velocity achieves near the internals. The turbulent velocity of particles near the wall increases with the addition of the internals, with the lateral solids mixing enhanced significantly. Probability density distribution of particle velocity is bimodal in the riser with internals, which is similar to that in the conventional riser, indicating that no significant difference in the micro flow structure exists between the riser with internals and the conventional riser. At the same time, the axial solids mixing behavior changes insignificantly with the addition of internals. These results indicate that the micro flow structure in the riser is very stable, which changes insignificantly with the change of the bed structure. 展开更多
关键词 RISER internal HYDRODYNAMICS solidS mixing behavior
下载PDF
PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL 被引量:2
9
作者 H.W. Yang D.P. Tao Z.H. Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第5期336-340,共5页
The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted va... The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient. 展开更多
关键词 Molecular interaction volume model mixing enthalpy liquid alloys PREDICTION
下载PDF
Thermal rectification induced by Wenzel–Cassie wetting state transition on nano-structured solid–liquid interfaces
10
作者 李海洋 王军 夏国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期520-526,共7页
Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectificatio... Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectification phenomenon in an asymmetric solid–liquid–solid sandwiched system with a nano-structured interface.By using the non-equilibrium molecular dynamics simulations,the thermal transport through the solid–liquid–solid system is examined,and the thermal rectification phenomenon can be observed.It is revealed that the thermal rectification effect can be attributed to the significant difference in the interfacial thermal resistance between Cassie and Wenzel states when reversing the temperature bias.In addition,effects of the liquid density,solid–liquid bonding strength and nanostructure size on the thermal rectification are examined.The findings may provide a new way for designs of certain thermal devices. 展开更多
关键词 thermal rectification wetting transition interfacial thermal resistance solid–liquid interfaces
下载PDF
Enthalpy of Mixing of Liquid Al-Cr and Cr-Ni Alloys 被引量:1
11
作者 P.Saltykov V.T.Witusiewicz 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期167-170,共4页
The partial and the integral enthalpies of mixing of liquid Al-Cr and Ni-Cr binary alloys have been determined by high temperature isoperibolic calorimetry at 1723±5 K and 1729±5 K, respectively. The results... The partial and the integral enthalpies of mixing of liquid Al-Cr and Ni-Cr binary alloys have been determined by high temperature isoperibolic calorimetry at 1723±5 K and 1729±5 K, respectively. The results were analytically described by the thermodynamically adapted power series (TAPS). The enthalpies of mixing values for both binary liquid melts are small and negative and in good agreement with the available literature data. Minima of the mixing enthalpies of liquid Al-Cr and Ni-Cr alloys are -7.0 kJ·mol-1 at 46 at. pct Cr and -3.0 kJ·mol-1 at 37 at. pct Cr, respectively. 展开更多
关键词 AL-CR CR-NI liquid alloys Enthalpy of mixing Isoperibolic calorimetry
下载PDF
Spray and mixing characteristics of liquid jet in a tubular gas-liquid atomization mixer 被引量:2
12
作者 Lingzhen Kong Jiaqing Chen +2 位作者 Tian Lan Huan Sun Kuisheng Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期1-11,共11页
For the design and optimization of a tubular gas-liquid atomization mixer,the atomization and mixing characteristics of liquid jet breakup in the limited tube space is a key problem.In this study,the primary breakup p... For the design and optimization of a tubular gas-liquid atomization mixer,the atomization and mixing characteristics of liquid jet breakup in the limited tube space is a key problem.In this study,the primary breakup process of liquid jet columnwas analyzed by high-speed camera,then the droplet size and velocity distribution of atomized droplets were measured by Phase-Doppler anemometry(PDA).The hydrodynamic characteristics of gas flow in tubular gas-liquid atomization mixer were analyzed by computational fluid dynamics(CFD)numerical simulation.The results indicate that the liquid flow rate has little effect on the atomization droplet size and atomization pressure drop,and the gas flowrate is themain influence parameter.Under all experimental gas flowconditions,the liquid jet column undergoes a primary breakup process,forming larger liquid blocks and droplets.When the gas flow rate(Qg)is less than 127 m^(3)·h^(−1),the secondary breakup of large liquid blocks and droplets does not occur in venturi throat region.The Sauter mean diameter(SMD)of droplets measured at the outlet is more than 140μm,and the distribution is uneven.When Qg>127 m^(3)·h^(−1),the large liquid blocks and droplets have secondary breakup process at the throat region.The SMD of droplets measured at the outlet is less than 140μm,and the distribution is uniform.When 127<Qg<162m^(3)·h^(−1),the secondary breakup mode of droplets is bag breakup or pouch breakup.When 181<Qg<216m^(3)·h^(−1),the secondary breakup mode of droplets is shear breakup or catastrophic breakup.In order to ensure efficient atomization and mixing,the throat gas velocity of the tubular atomization mixer should be designed to be about 51 m·s^(−1) under the lowest operating flow rate.The pressure drop of the tubular atomization mixer increases linearly with the square of gas velocity,and the resistance coefficient is about 2.55 in single-phase flow condition and 2.73 in gas-liquid atomization condition. 展开更多
关键词 Atomization mixing liquid jet Primary breakup Droplet breakup Droplet size
下载PDF
Numerical simulation of local and global mixing/segregation characteristics in a gas–solid fluidized bed 被引量:1
13
作者 Zhen Wan Youjun Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期72-86,共15页
Researches on solids mixing and segregation are of great significance for the operation and design of fluidized bed reactors.In this paper,the local and global mixing and segregation characteristics of binary mixtures... Researches on solids mixing and segregation are of great significance for the operation and design of fluidized bed reactors.In this paper,the local and global mixing and segregation characteristics of binary mixtures were investigated in a gas–solid fluidized bed by computational fluid dynamics-discrete element method(CFD-DEM)coupled approach.A methodology based on solids mixing entropy was developed to quantitatively calculate the mixing degree and time of the bed.The mixing curves of global mixing entropy were acquired,and the distribution maps of local mixing entropy and mixing time were also obtained.By comparing different operating conditions,the effects of superficial gas velocity,particle density ratio and size ratio on mixing/segregation behavior were discussed.Results showed that for the partial mixing state,the fluidized bed can be divided into three parts along the bed height:complete segregation area,transition area and stable mixing area.These areas showed different mixing/segregation processes.Increasing gas velocity promoted the local and global mixing of binary mixtures.The increase in particle density ratio and size ratio enlarged the complete segregation area,reduced the mixing degree and increased the mixing time in the stable mixing area. 展开更多
关键词 Discrete element method solids mixing Binary mixtures Fluidized bed
下载PDF
Improved Cellulose by Ionic Liquid Mixture with Solid Acid Catalysis and Its Application in Polyethylene Glycol Liquefaction 被引量:1
14
作者 Qiyu Chen Qingyue Wang +1 位作者 Naoki Mitsumura Hiroki Niida 《Materials Sciences and Applications》 2013年第12期839-845,共7页
Ionic liquid (IL), [BMIM]Cl-water was applied in cellulose pretreatment process and the pretreated cellulose was used in subsequent polyethylene glycol liquefaction process as a new application method. Cellulose recov... Ionic liquid (IL), [BMIM]Cl-water was applied in cellulose pretreatment process and the pretreated cellulose was used in subsequent polyethylene glycol liquefaction process as a new application method. Cellulose recovery rate and molecular weight value of pretreated cellulose were investigated to understand the influence of IL-water mixtures by adding the different amount of catalysis on cellulose crystalline structure. Gel permeation chromatograph, X-ray diffraction, Fourier transform infrared spectrometer and thermo gravimetric/differential thermal analysis were used to clarify the changes of pretreated cellulose. The results showed that the pretreated cellulose was improved in crystalline structure, molecular weight distribution and thermal stability. The liquefied residues from untreated cellulose and pretreated cellulose were considered as a significant index to determine the effect of IL-water mixture on cellulose. It suggested that the lower molecular weight of cellulose was obtained, the crystalline structure was disrupted and less order was formed. The liquefied residues result suggested that the lower residues at the latter stages of the reaction from the pretreated cellulose were observed. 展开更多
关键词 IONIC liquids mixTURE solid Acid Catalysts CELLULOSE Polyethylene GLYCOL LIQUEFACTION
下载PDF
On flow characteristics of liquid-solid mixed-phase nanofluid inside nanochannels 被引量:4
15
作者 H.AMINFAR N.RAZMARA M.MOHAMMADPOURFARD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第12期1541-1554,共14页
The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when t... The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel. 展开更多
关键词 clustering liquid-solid molecular dynamics simulation (MDS) nanofluid nanochannel
下载PDF
EFFECT OF SUSPENDED SOLID PARTICLES ON UNSTABILITY OF TWO-DIMENSION MIXING LAYER
16
作者 周泽宣 林建忠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第6期543-549,共7页
By considering the effect of suspended solid particles in the ordinary equations for two-dimension inviscid incompressible mixing layer, the Rayleigh equation and the modified Rayleigh equation are obtained. And then,... By considering the effect of suspended solid particles in the ordinary equations for two-dimension inviscid incompressible mixing layer, the Rayleigh equation and the modified Rayleigh equation are obtained. And then, by solving the corresponding eigen-value equations with numerical computational method, the relation curves between perturbation frequency and spacial growth rate of the mixing layer for the varying particle loading, ratio of particle velocity to fluid velocity and Stokes number are got. Sever al important conclusions on the effect of suspended solid particles on unstability of the mixing layer are presented in the end by analyzing all the relation curves. 展开更多
关键词 two-dimension mixing layer unstability suspended solid particles numerical computation
下载PDF
THE FACTORS AFFECTING ENTROPY OF MIXING OF LIQUID ALLOY SYSTEMS
17
作者 Z. Wu C.H. Li +1 位作者 P. Qin H.L. Liu and N. Y. Chen(Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第2期127-130,共4页
A modified Miedema model using four atomic parameters and pattern recognition or artificial neural network has been used to study the factors that affect the entropy of mixing of liquid binary alloy systems. It has be... A modified Miedema model using four atomic parameters and pattern recognition or artificial neural network has been used to study the factors that affect the entropy of mixing of liquid binary alloy systems. It has been found that the systems with larger electronegativity difference (△Φ) usuallg have negative △Sxs of mixing, while the systems with larger valence electron density difference(denoted by △n) and small △Φ usually have positive △Sxs of mixing. The artificial neural network-atomic parameter method can be used to predict the △Sxs of binary alloy systems consisting of non-transition elements. 展开更多
关键词 entropy of mixing liquid alloy system artificial neural network
下载PDF
Micro T-Mixer with Baffles: Effect of Baffle Height and Setting Angle on Mixing
18
作者 Miah Md Ashraful Alam Taichi Hirano +4 位作者 Yasutaka Hayamizu Takuya Masuda Tatsuki Hamada Shinichi Morita Manabu Takao 《Open Journal of Fluid Dynamics》 2023年第4期206-215,共10页
Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles... Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles. The Reynolds number, baffle height and setting angle were varied to investigate their effect on the mixing performance. Three micro T-mixer models were produced, which are several centimeters long and have a rectangular cross-section of few millimeters a side. The mixing of two-liquid was measured using the laser induced fluorescence (LIF) technique. Moreover, three-dimensional numerical simulations were conducted with the open-source CFD solver, OpenFOAM, for the same configuration as used in the experiments to investigate the detailed mechanism of the chaotic mixing. As a result, it was found that the mixing of two-liquid is greatly improved in the micro T-mixer with baffle. The baffle height and setting angle show a significant influence on the mixing performance. 展开更多
关键词 MICROmixER Baffles liquid-liquid mixing LIF CFD
下载PDF
Correlation between mixing enthalpy and structural order in liquid Mg−Si system
19
作者 WANG Jing-yu QIN +7 位作者 Ji-xue ZHOU Kai-ming CHENG Cheng-wei ZHAN Su-qing ZHANG Guo-chen ZHAO Xin-xin LI Ke-chang SHEN Yi ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期853-864,共12页
The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of S... The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of Si−Si interactions in the chemical environments around Si was demonstrated,which determined that the mixing enthalpy reached the minimum on Mg-rich side.In terms of Honeycutt and Anderson(HA)bond pairs based on the partial pair correlation functions,the attraction between Si−Si pairs and Mg atoms was revealed,and the evolution of structural order with Si content was characterized as a process of constituting frame structures by Si−Si pairs that dispersed Mg atoms.Focusing on tetrahedral order of local Si-configurations,a correlation between the mixing enthalpy and structural order was uncovered ultimately,which provided a new perspective combining the energetics with geometry to understand the liquid Mg−Si binary system. 展开更多
关键词 liquid Mg−Si system mixing enthalpy structural order ab-initio molecular dynamics
下载PDF
FUNDAMENTAL STUDIES ON THE HYDRODYNAMICS AND MIXING OF GAS AND SOLID IN A DOWNER REACTOR
20
作者 汪展文 魏飞 +1 位作者 金涌 俞芷青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第3期48-57,共10页
The effect of flow direction on hydrodynamics and mixing in the upflow and downflowcirculating fluidized beds is discussed in details.Similar profiles of gas and solids velocities andsolids concentration are found in ... The effect of flow direction on hydrodynamics and mixing in the upflow and downflowcirculating fluidized beds is discussed in details.Similar profiles of gas and solids velocities andsolids concentration are found in both risers and downers.When the flow is in the direction ofgravity(downer),the radial profiles of gas and particle velocity are more uniform than that inthe riser,the solids mixing is very small and the flow pattern approaches plug flow,while theflow is against gravity(riser),the solids backmixing significantly increase and the flow pattern isfar from plug flow.Among many of factors the flow direction has the largest influence onhydrodynamics and axial mixing of gas and solids. 展开更多
关键词 CIRCULATING fluidized BED GAS-solid mixing RTD
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部