We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2...We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.展开更多
By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer wa...By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.展开更多
We study via numerical experiments the localisation property of an acoustic wave in a viscoelastic soft medium containing randomly-distributed air bubbles. The behaviours of the oscillation phases of bubbles are parti...We study via numerical experiments the localisation property of an acoustic wave in a viscoelastic soft medium containing randomly-distributed air bubbles. The behaviours of the oscillation phases of bubbles are particularly investigated in various cases for distinguishing efficiently the acoustic localisation from the effects of acoustic absorption caused by the viscosity of medium. The numerical results reveal the phenomenon of 'phase transition' characterized by an unusual collective oscillation of bubbles, which is an effective criterion to unambiguously identify the acoustic localisation in the presence of viscosity. Within the localisation region, the phenomenon of phase transition persists, and a remarkable decrease in the fluctuation of the oscillation phases of bubbles is observed. The localisation phenomenon will be impaired by the enhancement of the viscosity factors, and the extent to which the acoustic wave is localised may be determined by appropriately analyzing the values of the oscillation phases or the amount of reduction of the phase fluctuation. The results are particularly significant for the practical experiments in an attempt to observe the acoustic localisation in such a medium, which is in general subjected to the interference of the great ambiguity resulting from the effect of acoustic absorption.展开更多
Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are a...Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are all used.During operation of a high voltage equipment high electric stress may occur.Under extreme condition failure of the insulation may take place.Excessive electric field in air may cause corona discharges while in liquid insulation discharges may take place in the form of streamer.This paper reports experimental results on the corona and streamer discharges in air and silicone oil.The discharges were artificially generated around a needle tip in a needle-plane electrode system with gap length of 4 mm under sinusoidal and triangular voltages.The needle was made of steel with tip radius of 3 μm and curvature angle of 30°.The needle was made by Ogura Jewelry.The discharge pulses were measured using personal-computer based partial discharge(PD)measurement system with sensitivity of better than 0.5 pC.The system is able to measure discharge in time sequential.Phase-resolved analysis of the discharges was done to interpret the physical processes behind the discharges.The experimental results showed that corona discharges took place at negative half cycles.The discharges were concentrated around 270° of phase angle of applied voltage.The discharge magnitude and discharge number of corona clearly dependent on the instantaneous of applied voltage.These were strongly supported by the application of triangular voltage.Streamer discharges occurred at both positive and negative half cycles.The discharges pulses concentrated around the peak of applied voltage at phase angle of 90° and 270°.Experimental results under sinusoidal and triangular voltages revealed that streamer discharge magnitude as well as probability of occurrence was strongly dependent on the instantaneous applied voltage.展开更多
The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop...The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.展开更多
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as...In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.展开更多
Numerical simulation method is applied in the study oftwo - phase flow dynamics in the eliminator of air wash-er. The carrier phase (air) is treated in Eulerian frame,the water droplets are tracked in the Lagrangian f...Numerical simulation method is applied in the study oftwo - phase flow dynamics in the eliminator of air wash-er. The carrier phase (air) is treated in Eulerian frame,the water droplets are tracked in the Lagrangian frame.A three - dimensional unsteady two - phase flow model isdeveloped. With the help of FLUENT software, air-stream velocity field and water droplets trajectories havebeen illustrated when their mixture passing through tra-ditional folded eliminator. The result of the simulationcan be used to investigate the mechanism of展开更多
Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational F...Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.展开更多
In this article, a new kind of solar fresh air system is designed in order to realize the improvement of thermal efficiency by the integrated application of the PCMs and heat pipe technology. Under the adequate sunshi...In this article, a new kind of solar fresh air system is designed in order to realize the improvement of thermal efficiency by the integrated application of the PCMs and heat pipe technology. Under the adequate sunshine condition, the fresh air is directly delivered into the indoor environment after being heated by the solar collector. When the sun radiation is reduced, the heated air temperature can not satisfy the need of supply of air temperature.The main heat source is changed to phase change heat storage equipment instead of solar energy. The system adopt heat pipe for a high-efficiency and isothermal heat transfer which recover the shortcomings of PCMs such as: low coefficient of thermal conductivity and poor thermal efficiency. This article establishes the physical model of phase change solar energy fresh air thermal storage system and creates the mathematical model of its unsteady heat transfer to simulate and analyse the operation process by using Fluent software. The results of the study show that, compared to normal fresh air system, the phase change solar energy fresh air thermal storage system has a significant improvement in energy saving and indoor comfort level and will play an important role in the energy sustainable development.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11704161the Natural Science Foundation of Jiangsu Province under Grant Nos BK20170309 and BK20151172the Changzhou Science and Technology Bureau under Grant Nos CJ20159049 and CJ20160028
文摘We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.
基金Project(50878133) supported by the National Natural Science Foundation of ChinaProject(2007R37) supported by the Program of Excellent Talents in Liaoning Province,China+1 种基金Project(2008S193) supported by the Key Laboratory Fund of Education Department in Liaoning Province, ChinaProject(1071211-1-00) supported by the Scientific and Technical Fund of Shenyang,China
文摘By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.
基金supported by the National Natural Science Foundation of China (Grant Nos.10804050 and 10874086)the Ministry of Education of China (Grant Nos.20060284035 and 705017)
文摘We study via numerical experiments the localisation property of an acoustic wave in a viscoelastic soft medium containing randomly-distributed air bubbles. The behaviours of the oscillation phases of bubbles are particularly investigated in various cases for distinguishing efficiently the acoustic localisation from the effects of acoustic absorption caused by the viscosity of medium. The numerical results reveal the phenomenon of 'phase transition' characterized by an unusual collective oscillation of bubbles, which is an effective criterion to unambiguously identify the acoustic localisation in the presence of viscosity. Within the localisation region, the phenomenon of phase transition persists, and a remarkable decrease in the fluctuation of the oscillation phases of bubbles is observed. The localisation phenomenon will be impaired by the enhancement of the viscosity factors, and the extent to which the acoustic wave is localised may be determined by appropriately analyzing the values of the oscillation phases or the amount of reduction of the phase fluctuation. The results are particularly significant for the practical experiments in an attempt to observe the acoustic localisation in such a medium, which is in general subjected to the interference of the great ambiguity resulting from the effect of acoustic absorption.
文摘Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are all used.During operation of a high voltage equipment high electric stress may occur.Under extreme condition failure of the insulation may take place.Excessive electric field in air may cause corona discharges while in liquid insulation discharges may take place in the form of streamer.This paper reports experimental results on the corona and streamer discharges in air and silicone oil.The discharges were artificially generated around a needle tip in a needle-plane electrode system with gap length of 4 mm under sinusoidal and triangular voltages.The needle was made of steel with tip radius of 3 μm and curvature angle of 30°.The needle was made by Ogura Jewelry.The discharge pulses were measured using personal-computer based partial discharge(PD)measurement system with sensitivity of better than 0.5 pC.The system is able to measure discharge in time sequential.Phase-resolved analysis of the discharges was done to interpret the physical processes behind the discharges.The experimental results showed that corona discharges took place at negative half cycles.The discharges were concentrated around 270° of phase angle of applied voltage.The discharge magnitude and discharge number of corona clearly dependent on the instantaneous of applied voltage.These were strongly supported by the application of triangular voltage.Streamer discharges occurred at both positive and negative half cycles.The discharges pulses concentrated around the peak of applied voltage at phase angle of 90° and 270°.Experimental results under sinusoidal and triangular voltages revealed that streamer discharge magnitude as well as probability of occurrence was strongly dependent on the instantaneous applied voltage.
文摘The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.
文摘In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.
基金Supported by Development Foundation of Dong Hua Univetsity
文摘Numerical simulation method is applied in the study oftwo - phase flow dynamics in the eliminator of air wash-er. The carrier phase (air) is treated in Eulerian frame,the water droplets are tracked in the Lagrangian frame.A three - dimensional unsteady two - phase flow model isdeveloped. With the help of FLUENT software, air-stream velocity field and water droplets trajectories havebeen illustrated when their mixture passing through tra-ditional folded eliminator. The result of the simulationcan be used to investigate the mechanism of
文摘Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.
文摘In this article, a new kind of solar fresh air system is designed in order to realize the improvement of thermal efficiency by the integrated application of the PCMs and heat pipe technology. Under the adequate sunshine condition, the fresh air is directly delivered into the indoor environment after being heated by the solar collector. When the sun radiation is reduced, the heated air temperature can not satisfy the need of supply of air temperature.The main heat source is changed to phase change heat storage equipment instead of solar energy. The system adopt heat pipe for a high-efficiency and isothermal heat transfer which recover the shortcomings of PCMs such as: low coefficient of thermal conductivity and poor thermal efficiency. This article establishes the physical model of phase change solar energy fresh air thermal storage system and creates the mathematical model of its unsteady heat transfer to simulate and analyse the operation process by using Fluent software. The results of the study show that, compared to normal fresh air system, the phase change solar energy fresh air thermal storage system has a significant improvement in energy saving and indoor comfort level and will play an important role in the energy sustainable development.