期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of HEA/Al composite interlayer on microstructure and mechanical property of Ti/Mg bimetal composite by solid-liquid compound casting 被引量:2
1
作者 Jin Cheng Jian-hua Zhao +3 位作者 Chun Wang Jing-jing Shangguan Cheng Gu Ya-jun Wang 《China Foundry》 SCIE CAS CSCD 2023年第1期1-11,共11页
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE... In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa. 展开更多
关键词 Ti/Mg bimetal composite microstructure solid-liquid compound casting HEA/Al composite interlayer mechanical property
下载PDF
Multi-scale Simulation on Bonding Mechanism of Solid-Liquid Cast-Rolling of Cu/Al Cladding Strip based on FEM and MD 被引量:2
2
作者 YAN Meng HUANG Huagui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期830-839,共10页
To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, ... To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process. 展开更多
关键词 CU/AL cladding strip solid-liquid cast-roll BONDING (SLCRB) BONDING MECHANISM finite element method (FEM) molecular dynamics (MD)
下载PDF
Microstructures and mechanical properties of TC4/AZ91D bimetal prepared by solid-liquid compound casting combined with Zn/Al composite interlayer 被引量:5
3
作者 Jian-hua ZHAO Jing-jing SHANGGUAN +2 位作者 Cheng GU Bing-yan JIN Yu SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第4期1144-1158,共15页
To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding int... To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding interface by solid-liquid compound casting,respectively.Al interlayer was prepared on the surface of TC4 alloy by hot dipping,and Zn/Al composite interlayer was prepared by electroplating process.The results suggested that the phases across the interface were Al Ti andα(Al)+Mg_(21)(Al,Zn)_(17)when Zn/Al composite interlayer was used.When Al interlayer was used as interlayer,Al Mg Ti ternary structure and Al_(12)Mg_(17)+δ-Mg eutectic structure were the main phases at the interface.The shear strength of TC4/AZ91D bimetal with Zn/Al composite interlayer was much higher than that with pure Al interlayer,and the value of the shear strength was increased from 48.5 to 67.4 MPa.Thermodynamic models based on different compositions of the interface were established to explain the microstructure evolution of the interfacial zone. 展开更多
关键词 Ti/Mg bimetal composite solid-liquid compound casting thermodynamic analysis microstructure mechanical properties
下载PDF
Microstructure and properties of Al/Cu bimetal in liquid-solid compound casting process 被引量:8
4
作者 胡媛 陈翌庆 +2 位作者 李立 胡焕冬 朱子昂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1555-1563,共9页
A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu ... A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu joints with different process parameters (bonding temperature and preheating time) were investigated. The results showed that intermetallics formed at the interface and the thickness and variety increased with the increase of bonding temperature and preheating time. The Ni?P interlayer functioned as a diffusion barrier and protective film which effectively reduced the formation of intermetallics. The shear strength and conductivity of Al/Cu bimetal were reduced by increasing the thickness of intermetallics. In particular, the detrimental effect of Al2Cu phase was more obvious compared with the others. The sample preheated at 780 ℃ for 150 s exhibited the maximum shear strength and conductivity of 49.8 MPa and 5.29×10^5 S/cm, respectively. 展开更多
关键词 Al/Cu bimetal solid-liquid compound casting electroless Ni plating Al2Cu phase microstructure mechanical properties conductivity
下载PDF
Cast-rolling force model of multi-roll solid–liquid cast-rolling bonding process for fabricating metal cladding materials
5
作者 Ce JI Huagui HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期346-368,共23页
Based on twin-roll casting technology and multi-roll groove rolling technology,a Multi-Roll Solid-Liquid Cast-Rolling Bonding(MRSLCRB)process was proposed to fabricate Cu/steel cladding bars,which processes the advant... Based on twin-roll casting technology and multi-roll groove rolling technology,a Multi-Roll Solid-Liquid Cast-Rolling Bonding(MRSLCRB)process was proposed to fabricate Cu/steel cladding bars,which processes the advantages of short flow and high-efficiency.However,it is a typical 3-D thermal-fluid-mechanics coupled problem,and determining cast-rolling force is difficult during the equipment design.Therefore,the geometrical evolution of the cast-rolling area was studied,laying the foundation to establish contact boundary equations and analyze mechanical schematics and metal flow.Then,a 3-D steady-state thermal-fluid coupled simulation model,including casting roll,substrate bar,and cladding metal,was established.The Kissing Point(KP)height,average outlet temperature,and process window were predicted,and simulation results of the three-roll layout indicate that the KP distribution along the circumferential direction can be considered uniform.Hence,the engineering cast-rolling force model was derived based on the differential element method and plane deformation hypothesis.The accuracy was verified by the 3-D finite element model,and the influences of process layouts and technological parameters on the castrolling force were analyzed.Through the indirect multi-field coupled analysis method,the temperature–pressure evolution and reasonable process window can be predicted,which provides a significant basis for guiding equipment design and improving product quality. 展开更多
关键词 cast-rolling force Kissing point Multi-field coupled Numerical simulation solid-liquid cast-rolling bonding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部