The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.I...The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.展开更多
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration a...Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.展开更多
In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with...In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.展开更多
While the influence of liquid qualities,surface morphology,and operating circumstances on critical heat flux(CHF)in pool boiling has been extensively studied,the effect of the heater substrate has not.Based on the for...While the influence of liquid qualities,surface morphology,and operating circumstances on critical heat flux(CHF)in pool boiling has been extensively studied,the effect of the heater substrate has not.Based on the force balance analysis,a theoretical model has been developed to accurately predict the CHF in pool boiling on a heater substrate.An analytical expression for the CHF of a heater substrate is obtained in terms of the surface thermophysical property.It is indicated that the ratio of thermal conductivity(k)to the product of density(ρ)and specific heat(cp)is an essential substrate property that influences the CHF.By modifying the well-known force-balance-based CHF model(Kandlikar model),the thermal characteristics of the substrate are taken into consideration.The bias of predicted CHF values are within 5%compared with the experimental results.展开更多
The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a ...The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.展开更多
The present study proposes a predictive model to explore the effect of partially filled porous media on the con-jugate heat transfer characteristic of phase change material(PCM)with interfacial coupling conditions bet...The present study proposes a predictive model to explore the effect of partially filled porous media on the con-jugate heat transfer characteristic of phase change material(PCM)with interfacial coupling conditions between pure fluid region and porous region.The enthalpy-porosity method,local thermal non-equilibrium model and Darcy-Forchheimer law are comprehensively considered to describe the convective heat transfer process in porous media.The modified model is then validated by benchmark data provided by particle image velocimetry(PIV)ex-periments.The phase change behavior,heat transfer efficiency and energy storage performance are numerically investigated for different partial porous filling strategies in terms of filling content,position,height of porous foam and inclination angles of cavity.The results indicate that due to the resistance in porous region,the shear stress exerted by the main vortex(natural convection)in pure fluid region and the momentum transferred,a secondary vortex phenomenon appears in the porous region near the fluid/porous interface.Moreover,such dis-continuity of permeability and fluid-to-porous thermal conductivity results in the cusp of phase change interface at the horizontal fluid/porous boundary.Among four partial porous filling cases,the lower porous filling one has more desirable heat transfer performance,and the 3/4H lower porous filling configuration is the best solution for optimization of the latent heat thermal energy storage(LHTES)systems.For tilted cavity,the increase of inclination angle positively affects the heat transfer efficiency as well as the energy storage rate of the LHTES system,where the performance of 3/4H lower porous filling configuration is further highlighted.展开更多
螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署...螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署(The Organisation for Economic Co-operation and Development,OECD/NEA)物性手册和美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)数据库建立液态金属和水-水蒸气变物性计算关联式,采用Lee相变模型计算二次侧水-水蒸气蒸发过程中两相间的质量传递。基于实验数据,分别对本文模型一次侧传热以及二次侧传热的计算可靠性进行了验证。最后以铅铋快堆为例,研究了不同一次侧进口参数下蒸汽发生器一、二次侧之间的耦合传热特性,并与传统水冷堆进行了对比。结果表明:在同等条件下,相比于传统水冷堆,一次侧采用铅铋液态金属时,一、二次侧之间的壁面热流密度明显提升,热流密度峰值可达1439.97 kW·m^(-2),比水冷堆相应数值提升5~6倍,这导致二次侧管内气相蒸发过程明显加剧,体积含气率急剧上升;同时,一、二次侧之间的沿程热流密度分布更加不均匀,沿程热流密度分布相对偏差值比水冷堆相应数值增大3~4倍。随着一次侧进口铅铋温度从350℃增大到450℃,一、二次侧之间的壁面热流密度随之增大,对应的热流密度峰值从950.7 kW·m^(-2)增大到1439.97 kW·m^(-2),提升约1.5倍,同时一、二次侧之间的沿程热流密度分布更加不均匀,不均匀度增大20%。展开更多
The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization gro...The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group(RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation(EDS),probability density function(PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.展开更多
以R141b制冷剂为基液,Al_2O_3为纳米颗粒,采用两步法制备了质量分数分别为0.2%、0.5%和0.8%的Al_2O_3-R141b纳米制冷剂,并进行了纳米制冷剂及R141b纯制冷剂在水力直径为1.33 mm的矩形微通道内流动沸腾传热实验。实验工况范围:饱和压力为...以R141b制冷剂为基液,Al_2O_3为纳米颗粒,采用两步法制备了质量分数分别为0.2%、0.5%和0.8%的Al_2O_3-R141b纳米制冷剂,并进行了纳米制冷剂及R141b纯制冷剂在水力直径为1.33 mm的矩形微通道内流动沸腾传热实验。实验工况范围:饱和压力为176 k Pa,入口过冷度为6~12℃,体积流量为20~50 L/h,热流密度为11.1~26.6 k W/m^2。实验结果与7个纯工质传热模型、2个纳米制冷剂传热模型进行比较评价。结果发现,在本实验研究范围内,纯工质传热模型不适用于纳米制冷剂传热系数的预测;Peng-Ding纳米制冷剂传热模型与KimMudawar纯工质传热模型组合对纳米制冷剂传热系数的预测值最接近实验值,平均绝对误差为17.22%,且能较好地反映纳米颗粒对流动沸腾传热影响的规律;结合实验数据对Peng-Ding模型的纳米影响因子(纳米制冷剂与纯制冷剂的传热系数之比)关联式进行修正,新关联式具有较好的预测效果,平均绝对误差为15.2%,且与Bertsch模型的组合能较好地预测微通道内纳米制冷剂传热系数,平均绝对误差降为16.4%。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11872083,12172017,12202021)。
文摘The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.
基金The project supported by the National Natural Science Foundation of China (19889209)Russian Foundation for Basic Research (97-02-16943)
文摘Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
文摘In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.
基金supported by the National Key Research and De velopment Program of China(Grant No.2018YFA0702100)National Natural Science Foundation of China(Gran No.U21A2079)+1 种基金the Zhejiang Provincial Key Research and Development Program of China(Grant Nos.2021C05002 and 2021C01026)the Fundamental Research Funds for the Central Universities。
文摘While the influence of liquid qualities,surface morphology,and operating circumstances on critical heat flux(CHF)in pool boiling has been extensively studied,the effect of the heater substrate has not.Based on the force balance analysis,a theoretical model has been developed to accurately predict the CHF in pool boiling on a heater substrate.An analytical expression for the CHF of a heater substrate is obtained in terms of the surface thermophysical property.It is indicated that the ratio of thermal conductivity(k)to the product of density(ρ)and specific heat(cp)is an essential substrate property that influences the CHF.By modifying the well-known force-balance-based CHF model(Kandlikar model),the thermal characteristics of the substrate are taken into consideration.The bias of predicted CHF values are within 5%compared with the experimental results.
基金National Natural Science Foundation of China(Grant No.91130013)Innovation Foundation of BUAA for PhD Graduates(YWF-12-RBYJ-010)Specialized Research Fund for the Doctoral Program of Higher Education(20101102110011)for funding this work
文摘The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.
基金support from the National Natural Science Foundation of China(Grant No.:52006039)Natural Science Foundation of Guangdong Province(Grant No.:2022A1515010602)+1 种基金Guangzhou Science and Technology Plan Project(Grant No.:202201010575)Guangdong Provincial Key Laboratory of Distributed Energy Systems(Grant No.:2020B1212060075).
文摘The present study proposes a predictive model to explore the effect of partially filled porous media on the con-jugate heat transfer characteristic of phase change material(PCM)with interfacial coupling conditions between pure fluid region and porous region.The enthalpy-porosity method,local thermal non-equilibrium model and Darcy-Forchheimer law are comprehensively considered to describe the convective heat transfer process in porous media.The modified model is then validated by benchmark data provided by particle image velocimetry(PIV)ex-periments.The phase change behavior,heat transfer efficiency and energy storage performance are numerically investigated for different partial porous filling strategies in terms of filling content,position,height of porous foam and inclination angles of cavity.The results indicate that due to the resistance in porous region,the shear stress exerted by the main vortex(natural convection)in pure fluid region and the momentum transferred,a secondary vortex phenomenon appears in the porous region near the fluid/porous interface.Moreover,such dis-continuity of permeability and fluid-to-porous thermal conductivity results in the cusp of phase change interface at the horizontal fluid/porous boundary.Among four partial porous filling cases,the lower porous filling one has more desirable heat transfer performance,and the 3/4H lower porous filling configuration is the best solution for optimization of the latent heat thermal energy storage(LHTES)systems.For tilted cavity,the increase of inclination angle positively affects the heat transfer efficiency as well as the energy storage rate of the LHTES system,where the performance of 3/4H lower porous filling configuration is further highlighted.
文摘螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署(The Organisation for Economic Co-operation and Development,OECD/NEA)物性手册和美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)数据库建立液态金属和水-水蒸气变物性计算关联式,采用Lee相变模型计算二次侧水-水蒸气蒸发过程中两相间的质量传递。基于实验数据,分别对本文模型一次侧传热以及二次侧传热的计算可靠性进行了验证。最后以铅铋快堆为例,研究了不同一次侧进口参数下蒸汽发生器一、二次侧之间的耦合传热特性,并与传统水冷堆进行了对比。结果表明:在同等条件下,相比于传统水冷堆,一次侧采用铅铋液态金属时,一、二次侧之间的壁面热流密度明显提升,热流密度峰值可达1439.97 kW·m^(-2),比水冷堆相应数值提升5~6倍,这导致二次侧管内气相蒸发过程明显加剧,体积含气率急剧上升;同时,一、二次侧之间的沿程热流密度分布更加不均匀,沿程热流密度分布相对偏差值比水冷堆相应数值增大3~4倍。随着一次侧进口铅铋温度从350℃增大到450℃,一、二次侧之间的壁面热流密度随之增大,对应的热流密度峰值从950.7 kW·m^(-2)增大到1439.97 kW·m^(-2),提升约1.5倍,同时一、二次侧之间的沿程热流密度分布更加不均匀,不均匀度增大20%。
文摘The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group(RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation(EDS),probability density function(PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.
文摘以R141b制冷剂为基液,Al_2O_3为纳米颗粒,采用两步法制备了质量分数分别为0.2%、0.5%和0.8%的Al_2O_3-R141b纳米制冷剂,并进行了纳米制冷剂及R141b纯制冷剂在水力直径为1.33 mm的矩形微通道内流动沸腾传热实验。实验工况范围:饱和压力为176 k Pa,入口过冷度为6~12℃,体积流量为20~50 L/h,热流密度为11.1~26.6 k W/m^2。实验结果与7个纯工质传热模型、2个纳米制冷剂传热模型进行比较评价。结果发现,在本实验研究范围内,纯工质传热模型不适用于纳米制冷剂传热系数的预测;Peng-Ding纳米制冷剂传热模型与KimMudawar纯工质传热模型组合对纳米制冷剂传热系数的预测值最接近实验值,平均绝对误差为17.22%,且能较好地反映纳米颗粒对流动沸腾传热影响的规律;结合实验数据对Peng-Ding模型的纳米影响因子(纳米制冷剂与纯制冷剂的传热系数之比)关联式进行修正,新关联式具有较好的预测效果,平均绝对误差为15.2%,且与Bertsch模型的组合能较好地预测微通道内纳米制冷剂传热系数,平均绝对误差降为16.4%。