Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the parti...Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface.展开更多
The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showe...The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS) was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate,but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.展开更多
The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case...The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case of active adsorption.The authors suggest a new force“apparent active adsorption force”βto take part in the balance at the three interface lines of contact in the solid-liquid-vapor phases,its dimen- sion isβ=Σα_iRT(Γ_i^(sl)-Γ_i^(sv)+Γ_i^(lv)cosθ),and its direction is dependent on the sign of β,whenβis a positive, the direction is agree with surface tension of the sol- id-vapor interface γ and vice versa.展开更多
In this work,the advantage of Coulomb repulsion in the intermolecular forces experienced by molecules on the solid–liquid nanosized contact interface is taken,and the superior friction-reducing property of Cu_(3)(PO_...In this work,the advantage of Coulomb repulsion in the intermolecular forces experienced by molecules on the solid–liquid nanosized contact interface is taken,and the superior friction-reducing property of Cu_(3)(PO_(4))2·3H_(2)O(CuP)oil-based additives has been confirmed for titanium alloy.Three-dimensional(3D)CuP nanoflowers(CuP-Fs)with a strong capillary absorption effect are prepared to achieve the homogeneous mixing of solid CuP and lubricating oil.Lubrication by CuP-Fs additives for titanium alloy,friction coefficient(COF)can be reduced by 73.68%,and wear rate(WR)reduced by 99.69%.It is demonstrated that the extraordinary friction-reducing property is due to the repulsive solid–liquid interface with low viscous shear force originating from Coulomb repulsion between polar water molecules in CuP and non-polar oil molecules.However,any steric hindrance or connection between this repulsive solid–liquid interface will trigger the adhesion and increase the viscous shear force,for example,dispersant,hydrogen bondings,and shaky adsorbed water molecules.Besides,the lamellar thickness of CuP and the molecular size of lubricant both have a great influence on tribological properties.Here the lubrication mechanism based on interface Coulomb repulsion is proposed that may help broaden the scope of the exploration in low-friction nanomaterial design and new lubricant systems.展开更多
Oil film vortex severely reduces the stability of hydrostatic bearings. A solid-liquid interface with drag and slip properties can weaken the oil film vortex of the bearing. Here, a combined picosecond laser ablation ...Oil film vortex severely reduces the stability of hydrostatic bearings. A solid-liquid interface with drag and slip properties can weaken the oil film vortex of the bearing. Here, a combined picosecond laser ablation and chemical modification method is proposed to prepare surfaces with microbulge array structure on 6061 aluminum alloy substrates. Because of the low surface energy of the perfluorododecyltriethoxysilane modification and the bulge geometry of the microbulge array structure, the surface shows excellent superhydrophobicity. The optimum contact angle in air for water is 164°, and that for oil is 139°. Two surfaces with “lotus-leaf effect” and “rose-petal effect” were obtained by controlling the processing parameters. The drag reduction properties of superhydrophobic surfaces were systematically investigated with slip lengths of 22.26 and 36.25 μm for deionized water and VG5 lubricant, respectively. In addition, the superhydrophobic surface exhibits excellent mechanical durability and thermal stability. The proposed method provides a new idea for vortex suppression in hydrostatic bearings and improves the stability of bearings in high-speed operation.展开更多
The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temp...The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temperatures(700, 750, 800 oC) was investigated by means of metallograph, scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS) methods. The results showed that the pouring temperature of aluminum melt had an important influence on the element diffusion of Cu from the solid Cu to Al alloy melt and the reactions between Al and Cu, as well as the morphology of the Al-Cu interface. When the pouring temperature was 800 oC, there were abundant Al-Cu intermetallic compounds(IMCs) near the interface. However, a lower pouring temperature(700 oC) resulted in the formation of cavities which was detrimental to the bonding and mechanical properties. Under the conditions in this study, the good metallurgical bonding of Al-Cu was achieved at a pouring temperature of 750 oC.展开更多
The interaction of particles with a solid-liquid interface during solidification of metal matrix composites has been investigated theoretically in this paper.Owing to the presence of particles in the melt,the shape of...The interaction of particles with a solid-liquid interface during solidification of metal matrix composites has been investigated theoretically in this paper.Owing to the presence of particles in the melt,the shape of the solidification front and solute concentration field in front of solidification interface have been disturbed The thermodynamic method was employed,and a mathematical expression of the shape of the solidification interface and solute concentration field were deduced.Meanwhile,a theory is developed for evaluation of critical velocities of particles pushed by the solidification interface.A numerical simulation is done in which the critical velocity is evaluated as a function of particle size,thermal conductivity,diffusion coefficient,temperature gradient at the solidification front,the solid-liquid interfacial energy and the melt viscosity.The critical velocity is shown to be closely linked to the shape of the solidification interface and solute concentration field, and hence all the parameters also affect the shape of the solidification interface and solute concentration field of the front.展开更多
The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) in...The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) interface morphology and solute segregation. The interface morphology and the C and Mn segregation of the steel directionally solidified at 6.9 μtrn/s were investigated with an image analysis and a scanning electron microscope equipped with energy dispersive X-ray analysis. The 0.5wt% Ca-Si modified steel is solidified with a planar S-L interface. The interface of the 1.0wt% Ca-Si modified steel is similar to that of the 0.5wt% Ca-Si modified steel, but with larger nodes. The 1.5wt% Ca-Si modified steel displays a cellular growth parttern. The S-L interface morphology of the 0.5wt% Ca-Si+1.0wt% Y-Si modified Mn steel appears as dendritic interface, and primary austenite dendrites reveal developed lateral branching at the quenched liquid. In the meantime, the independent austenite colonies are formed ahead of the S-L interface. A mechanism involving constitutional supercooling explains the S-L interface evolution. It depends mainly on the difference in the contents of Ca, Y, and Si ahead of the S-L interface. The segregation of C and Mn ahead of the S-L interface enhanced by the modifiers is observed.展开更多
The boundary slip condition is pivotal for nanoscale fluid motion.Recent research has primarily focused on simulating the interaction mechanism between the electronic structure of two-dimensional materials and slip of...The boundary slip condition is pivotal for nanoscale fluid motion.Recent research has primarily focused on simulating the interaction mechanism between the electronic structure of two-dimensional materials and slip of water at the nanoscale,raising the possibility for ultralow friction flow of water at the nanoscale.However,experimentally elucidating electronic interactions at the dynamic solid–liquid interface to control boundary slip poses a significant challenge.In this study,the crucial role of electron structures at the dynamic solid–liquid interface in regulating slip length was revealed.Notably,the slip length of water on the molybdenum disulfide/graphene(MoS_(2)/G)heterostructure(100.9±3.6 nm)significantly exceeded that of either graphene(27.7±2.2 nm)or MoS_(2)(5.7±3.1 nm)alone.It was also analyzed how electron transfer significantly affected interface interactions.Excess electrons played a crucial role in determining the type and proportion of excitons at both MoS_(2)–water and MoS_(2)/G–water interfaces.Additionally,by applying voltage,distinct photoluminescence(PL)responses at static and dynamic interfaces were discovered,achieving a 5-fold modulation in PL intensity and a 2-fold modulation in the trion to exciton intensity ratio.More electrons transfer from the top graphene to the bottom MoS_(2)at the MoS_(2)/G–water interface,reducing surface charge density.Thus,the reduction of electrostatic interactions between the solid and water leads to an increased slip length of water on the MoS_(2)/G heterostructure.The process aids in comprehending the origin of frictional resistance at the subatomic scale.This work establishes a foundation for actively controlling and designing of fluid transport at the nanoscale.展开更多
High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient sup...High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient supply of lubricating oil and grease.Traditional self-lubricating coatings prepared by inorganic,organic or organic-inorganic hybrid methods are prone to be oxidated at high temperatures to lose their friction reducing function,so that it is difficult to meet the engineering requirements of high-temperature lubrication.We design viscoelastic polymer coatings by a high-temperature self-lubricating and wear-resistant strategy.Polytetrafluoroethylene(PTFE,T_(m)=329℃)and polyphenylene sulfide(PPS,T_(g)=84℃,T_(m)=283℃)are used to prepare a PTFE/PPS polymer alloy coating.As the temperature increases from 25 to 300℃,the PTFE/PPS coating softens from glass state to viscoelastic state and viscous flow state,which is owing to the thermodynamic transformation characteristic of the PPS component.Additionally the friction coefficient(μ)decreased from 0.096 to 0.042 with the increasing of temperature from 25 to 300℃.The mechanism of mechanical deformation and surface morphology evolution for the PTFE/PPS coating under the multi-field coupling action of temperature(T),temperature–centrifugal force(T–F_(ω)),temperature–centrifugal force–shearing force(T–F_(ω)–F_(τ))were investigated.The physical model of“thermoviscoelasticity driven solid–liquid interface reducing friction”is proposed to clarify the self-lubricating mechanism determined by the high-temperature viscoelastic properties of polymers.The high-temperature adjusts the viscosity(η)of the coating,increases interface slipping and intensifies shear deformation(τ),reducing the friction coefficient.The result is expected to provide a new idea for designing anti-ablation coatings served in high temperature friction and wear conditions.展开更多
The equilibrated grain boundary groove shapes of solid solution Ag2Al in equilibrium with an AI-Cu-Ag liquid were observed from a quenched sample with a radial heat flow apparatus. The Gibbs Thomson coefficient, solid...The equilibrated grain boundary groove shapes of solid solution Ag2Al in equilibrium with an AI-Cu-Ag liquid were observed from a quenched sample with a radial heat flow apparatus. The Gibbs Thomson coefficient, solid liquid interfacial energy and grain boundary energy of the solid solution Ag2Al have been determined from the observed grain boundary groove shapes. The thermal conductivity of the solid phase and the thermal conductivity ratio of the liquid phase to solid phase for Ag2Al-28.3 at the %CuAl2 alloy at the melting temperature have also been measured with a radial heat flow apparatus and Bridgman type growth apparatus, separately.展开更多
Triboelectrification between a liquid and a solid is a common phenomenon in our daily life and industry.Triboelectric charges generated at liquid/solid interfaces have effects on energy harvesting,triboelectrification...Triboelectrification between a liquid and a solid is a common phenomenon in our daily life and industry.Triboelectric charges generated at liquid/solid interfaces have effects on energy harvesting,triboelectrification-based sensing,interfacial corrosion,wear,lubrication,etc.Knowing the amount of triboelectric charge transfer is very useful for studying the mechanism and controlling these phenomena,in which an accurate method is absolutely necessary to measure the triboelectric charge generated at the solid–liquid interface.Herein,we established a method for measuring the charge transfer between different solids and liquids.An equipment based on the Faraday cup measurement was developed,and the leakage ratio(r_(l))was quantified through simulation based on an electrostatic field model.Typical experiments were conducted to validate the reliability of the method.This work provides an effective method for charge measurement in triboelectrification research.展开更多
The solid-liquid interfacial thermal transport depends on the physical properties of the interfaces,which have been studied extensively in open literature.However,the fundamental understanding on the mechanism of the ...The solid-liquid interfacial thermal transport depends on the physical properties of the interfaces,which have been studied extensively in open literature.However,the fundamental understanding on the mechanism of the solid-liquid interfacial thermal transport is far from clear.In the present paper,heat transfer through solid-liquid interfaces is studied based on the non-equilibrium molecular dynamics simulations.It is shown that the interfacial heat transfer can be enhanced by increasing interfacial coupling strength or introducing the nanostructured surfaces.The underlying mechanism of the interfacial thermal transport is analyzed based on the calculation results of the heat flux distribution,potential mean force,and the vibrational density of states at the interfacial region.It is found that the interfacial thermal transport is dominated by the kinetic and virial contributions in the interface region.The enhancement of the interfacial heat transfer can be attributed to the fluid adsorption on the solid surface under a strong interfacial interaction or by the nanostructured solid surfaces,which reduce the mismatch of the vibrational density of states at the solid-liquid interface region.展开更多
Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review s...Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review summarizes the self-assembly of the nanoparticles at solid-liquid interface according to the different driving forces of assembly,including hydrophilic-hydrophobic interactions,solvophobic and electrostatic interaction.To be specific,the self-assembly can be divided into the following two types:surfactant-assisted self-assembly and direct self-assembly of Janus particles(inorganic and amphiphilic copolymer-inorganic Janus nanoparticles).Using the emulsion stabilized by nanoparticles as the template,the self-assembly constructed by the interaction of the nanostructure unit(including metal,metal oxide,and semiconductor,etc.)not only possesses the characteristic of nanostructure unit,but also exhibits the excellent assembly performance in electrochemistry aspect.The application of these assemblies in the area of electrochemical capacitors is presented.Finally,the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid-liquid interface are proposed.展开更多
Morphological evolution of the solid-liquid interface near grain boundaries has been studied during directional solidification of succinonitrile-based transparent alloys (SCN-0.9wt%DCB). Experimental results show that...Morphological evolution of the solid-liquid interface near grain boundaries has been studied during directional solidification of succinonitrile-based transparent alloys (SCN-0.9wt%DCB). Experimental results show that the grain boundary provides the starting point of morphological instability of the solid-liquid interface. The initial perturbation near the grain boundary is significantly larger than other perturbations on the interface. The initial shape of the interface and the competition between the thermal direction and preferred crystalline orientations determine the subsequent growth pattern selections. The temporal variations of the curvature radius of cell/ridge tips near the grain boundary have also been studied when the instability occurs. This process is divided into three parts. As the pulling velocity increases, dendrites at the grain boundary grow in two different directions to form a bicrystal microstructure. Side branches on either side of the dendrite exhibit different growth patterns.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59734080 and 59504006)the Project of National Fundamental Research and Development of China (Grant No. G1998061510) and High-Tech Research and Development Project
文摘Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface.
基金This work was financially supported by the National Natural Science Foundation of China (No.50371006).
文摘The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718,under different cooling rates during directional solidification,were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS) was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate,but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.
文摘The paper presents a new relationship between the three surface tensions on the solid-liquid-vapor interface, γ_(sl)-γ_(sv)+γ_(lv)cosθ=βin order to understand the wetting on the liquid-solid interface in the case of active adsorption.The authors suggest a new force“apparent active adsorption force”βto take part in the balance at the three interface lines of contact in the solid-liquid-vapor phases,its dimen- sion isβ=Σα_iRT(Γ_i^(sl)-Γ_i^(sv)+Γ_i^(lv)cosθ),and its direction is dependent on the sign of β,whenβis a positive, the direction is agree with surface tension of the sol- id-vapor interface γ and vice versa.
基金the National Natural Science Foundation of China(Nos.51975421,52075405,and 51975420)Hubei Longzhong Laboratory Independent Innovation Research Project(No.2022ZZ-05).
文摘In this work,the advantage of Coulomb repulsion in the intermolecular forces experienced by molecules on the solid–liquid nanosized contact interface is taken,and the superior friction-reducing property of Cu_(3)(PO_(4))2·3H_(2)O(CuP)oil-based additives has been confirmed for titanium alloy.Three-dimensional(3D)CuP nanoflowers(CuP-Fs)with a strong capillary absorption effect are prepared to achieve the homogeneous mixing of solid CuP and lubricating oil.Lubrication by CuP-Fs additives for titanium alloy,friction coefficient(COF)can be reduced by 73.68%,and wear rate(WR)reduced by 99.69%.It is demonstrated that the extraordinary friction-reducing property is due to the repulsive solid–liquid interface with low viscous shear force originating from Coulomb repulsion between polar water molecules in CuP and non-polar oil molecules.However,any steric hindrance or connection between this repulsive solid–liquid interface will trigger the adhesion and increase the viscous shear force,for example,dispersant,hydrogen bondings,and shaky adsorbed water molecules.Besides,the lamellar thickness of CuP and the molecular size of lubricant both have a great influence on tribological properties.Here the lubrication mechanism based on interface Coulomb repulsion is proposed that may help broaden the scope of the exploration in low-friction nanomaterial design and new lubricant systems.
基金supported by the National Key R&D Program of China(Grant No. 2020YFB2007600)National Natural Science Foundation of China(Grant Nos. 51875223 and 52188102)Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Manufacturing Equipment Digization(Grant No. 2020B1212060014)。
文摘Oil film vortex severely reduces the stability of hydrostatic bearings. A solid-liquid interface with drag and slip properties can weaken the oil film vortex of the bearing. Here, a combined picosecond laser ablation and chemical modification method is proposed to prepare surfaces with microbulge array structure on 6061 aluminum alloy substrates. Because of the low surface energy of the perfluorododecyltriethoxysilane modification and the bulge geometry of the microbulge array structure, the surface shows excellent superhydrophobicity. The optimum contact angle in air for water is 164°, and that for oil is 139°. Two surfaces with “lotus-leaf effect” and “rose-petal effect” were obtained by controlling the processing parameters. The drag reduction properties of superhydrophobic surfaces were systematically investigated with slip lengths of 22.26 and 36.25 μm for deionized water and VG5 lubricant, respectively. In addition, the superhydrophobic surface exhibits excellent mechanical durability and thermal stability. The proposed method provides a new idea for vortex suppression in hydrostatic bearings and improves the stability of bearings in high-speed operation.
基金financially supported by the National Natural Science Foundation of China(Nos.51074031 and 51501027)the China Postdoctoral Science Foundation(No.2015M570246)the Fundamental Research Funds for the Central Universities of China[DUT15RC(3)065]
文摘The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temperatures(700, 750, 800 oC) was investigated by means of metallograph, scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS) methods. The results showed that the pouring temperature of aluminum melt had an important influence on the element diffusion of Cu from the solid Cu to Al alloy melt and the reactions between Al and Cu, as well as the morphology of the Al-Cu interface. When the pouring temperature was 800 oC, there were abundant Al-Cu intermetallic compounds(IMCs) near the interface. However, a lower pouring temperature(700 oC) resulted in the formation of cavities which was detrimental to the bonding and mechanical properties. Under the conditions in this study, the good metallurgical bonding of Al-Cu was achieved at a pouring temperature of 750 oC.
文摘The interaction of particles with a solid-liquid interface during solidification of metal matrix composites has been investigated theoretically in this paper.Owing to the presence of particles in the melt,the shape of the solidification front and solute concentration field in front of solidification interface have been disturbed The thermodynamic method was employed,and a mathematical expression of the shape of the solidification interface and solute concentration field were deduced.Meanwhile,a theory is developed for evaluation of critical velocities of particles pushed by the solidification interface.A numerical simulation is done in which the critical velocity is evaluated as a function of particle size,thermal conductivity,diffusion coefficient,temperature gradient at the solidification front,the solid-liquid interfacial energy and the melt viscosity.The critical velocity is shown to be closely linked to the shape of the solidification interface and solute concentration field, and hence all the parameters also affect the shape of the solidification interface and solute concentration field of the front.
基金This work is financially supported by the National Natural Science Foundation of China (No.50001008 and No. 50271042).
文摘The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) interface morphology and solute segregation. The interface morphology and the C and Mn segregation of the steel directionally solidified at 6.9 μtrn/s were investigated with an image analysis and a scanning electron microscope equipped with energy dispersive X-ray analysis. The 0.5wt% Ca-Si modified steel is solidified with a planar S-L interface. The interface of the 1.0wt% Ca-Si modified steel is similar to that of the 0.5wt% Ca-Si modified steel, but with larger nodes. The 1.5wt% Ca-Si modified steel displays a cellular growth parttern. The S-L interface morphology of the 0.5wt% Ca-Si+1.0wt% Y-Si modified Mn steel appears as dendritic interface, and primary austenite dendrites reveal developed lateral branching at the quenched liquid. In the meantime, the independent austenite colonies are formed ahead of the S-L interface. A mechanism involving constitutional supercooling explains the S-L interface evolution. It depends mainly on the difference in the contents of Ca, Y, and Si ahead of the S-L interface. The segregation of C and Mn ahead of the S-L interface enhanced by the modifiers is observed.
基金supported by the National Natural Science Foundation of China(Nos.52075284,52105195,and 11890672)the Postdoctoral Research Foundation of China(Nos.2020M680528,BX2021151,and 2022M711805).
文摘The boundary slip condition is pivotal for nanoscale fluid motion.Recent research has primarily focused on simulating the interaction mechanism between the electronic structure of two-dimensional materials and slip of water at the nanoscale,raising the possibility for ultralow friction flow of water at the nanoscale.However,experimentally elucidating electronic interactions at the dynamic solid–liquid interface to control boundary slip poses a significant challenge.In this study,the crucial role of electron structures at the dynamic solid–liquid interface in regulating slip length was revealed.Notably,the slip length of water on the molybdenum disulfide/graphene(MoS_(2)/G)heterostructure(100.9±3.6 nm)significantly exceeded that of either graphene(27.7±2.2 nm)or MoS_(2)(5.7±3.1 nm)alone.It was also analyzed how electron transfer significantly affected interface interactions.Excess electrons played a crucial role in determining the type and proportion of excitons at both MoS_(2)–water and MoS_(2)/G–water interfaces.Additionally,by applying voltage,distinct photoluminescence(PL)responses at static and dynamic interfaces were discovered,achieving a 5-fold modulation in PL intensity and a 2-fold modulation in the trion to exciton intensity ratio.More electrons transfer from the top graphene to the bottom MoS_(2)at the MoS_(2)/G–water interface,reducing surface charge density.Thus,the reduction of electrostatic interactions between the solid and water leads to an increased slip length of water on the MoS_(2)/G heterostructure.The process aids in comprehending the origin of frictional resistance at the subatomic scale.This work establishes a foundation for actively controlling and designing of fluid transport at the nanoscale.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(No.52075560).
文摘High-temperature ablation is a common failure phenomenon that limits the service life of the transmission parts on heavy-duty machines used in heavy load,high temperature,high shock conditions due to in-sufficient supply of lubricating oil and grease.Traditional self-lubricating coatings prepared by inorganic,organic or organic-inorganic hybrid methods are prone to be oxidated at high temperatures to lose their friction reducing function,so that it is difficult to meet the engineering requirements of high-temperature lubrication.We design viscoelastic polymer coatings by a high-temperature self-lubricating and wear-resistant strategy.Polytetrafluoroethylene(PTFE,T_(m)=329℃)and polyphenylene sulfide(PPS,T_(g)=84℃,T_(m)=283℃)are used to prepare a PTFE/PPS polymer alloy coating.As the temperature increases from 25 to 300℃,the PTFE/PPS coating softens from glass state to viscoelastic state and viscous flow state,which is owing to the thermodynamic transformation characteristic of the PPS component.Additionally the friction coefficient(μ)decreased from 0.096 to 0.042 with the increasing of temperature from 25 to 300℃.The mechanism of mechanical deformation and surface morphology evolution for the PTFE/PPS coating under the multi-field coupling action of temperature(T),temperature–centrifugal force(T–F_(ω)),temperature–centrifugal force–shearing force(T–F_(ω)–F_(τ))were investigated.The physical model of“thermoviscoelasticity driven solid–liquid interface reducing friction”is proposed to clarify the self-lubricating mechanism determined by the high-temperature viscoelastic properties of polymers.The high-temperature adjusts the viscosity(η)of the coating,increases interface slipping and intensifies shear deformation(τ),reducing the friction coefficient.The result is expected to provide a new idea for designing anti-ablation coatings served in high temperature friction and wear conditions.
基金supported by the Scientific and Technical Research Council of Turkey (TBTAK (Grant No 105T481)
文摘The equilibrated grain boundary groove shapes of solid solution Ag2Al in equilibrium with an AI-Cu-Ag liquid were observed from a quenched sample with a radial heat flow apparatus. The Gibbs Thomson coefficient, solid liquid interfacial energy and grain boundary energy of the solid solution Ag2Al have been determined from the observed grain boundary groove shapes. The thermal conductivity of the solid phase and the thermal conductivity ratio of the liquid phase to solid phase for Ag2Al-28.3 at the %CuAl2 alloy at the melting temperature have also been measured with a radial heat flow apparatus and Bridgman type growth apparatus, separately.
文摘Triboelectrification between a liquid and a solid is a common phenomenon in our daily life and industry.Triboelectric charges generated at liquid/solid interfaces have effects on energy harvesting,triboelectrification-based sensing,interfacial corrosion,wear,lubrication,etc.Knowing the amount of triboelectric charge transfer is very useful for studying the mechanism and controlling these phenomena,in which an accurate method is absolutely necessary to measure the triboelectric charge generated at the solid–liquid interface.Herein,we established a method for measuring the charge transfer between different solids and liquids.An equipment based on the Faraday cup measurement was developed,and the leakage ratio(r_(l))was quantified through simulation based on an electrostatic field model.Typical experiments were conducted to validate the reliability of the method.This work provides an effective method for charge measurement in triboelectrification research.
基金Beijing Nova Program of Science and Technology(No.Z191100001119033)。
文摘The solid-liquid interfacial thermal transport depends on the physical properties of the interfaces,which have been studied extensively in open literature.However,the fundamental understanding on the mechanism of the solid-liquid interfacial thermal transport is far from clear.In the present paper,heat transfer through solid-liquid interfaces is studied based on the non-equilibrium molecular dynamics simulations.It is shown that the interfacial heat transfer can be enhanced by increasing interfacial coupling strength or introducing the nanostructured surfaces.The underlying mechanism of the interfacial thermal transport is analyzed based on the calculation results of the heat flux distribution,potential mean force,and the vibrational density of states at the interfacial region.It is found that the interfacial thermal transport is dominated by the kinetic and virial contributions in the interface region.The enhancement of the interfacial heat transfer can be attributed to the fluid adsorption on the solid surface under a strong interfacial interaction or by the nanostructured solid surfaces,which reduce the mismatch of the vibrational density of states at the solid-liquid interface region.
基金financially supported by the National Natural Science Foundation of China(Nos.51772296,5217020858,51902016 and 21975015)the Fundamental Research Funds for the Central Universities(Nos.buctrc201829 and buctrc201904)。
文摘Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review summarizes the self-assembly of the nanoparticles at solid-liquid interface according to the different driving forces of assembly,including hydrophilic-hydrophobic interactions,solvophobic and electrostatic interaction.To be specific,the self-assembly can be divided into the following two types:surfactant-assisted self-assembly and direct self-assembly of Janus particles(inorganic and amphiphilic copolymer-inorganic Janus nanoparticles).Using the emulsion stabilized by nanoparticles as the template,the self-assembly constructed by the interaction of the nanostructure unit(including metal,metal oxide,and semiconductor,etc.)not only possesses the characteristic of nanostructure unit,but also exhibits the excellent assembly performance in electrochemistry aspect.The application of these assemblies in the area of electrochemical capacitors is presented.Finally,the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid-liquid interface are proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos.61078057 and 51172183)NPU Foundation for Fundamental Research (Grant Nos.NPU-FFR-JC201048 and JC201155)+1 种基金the Science & Technology Program of Shanghai Maritime University (Grant No.20110054)the Project of the Excellent Youth of Shanghai (WANG CaiFang)
文摘Morphological evolution of the solid-liquid interface near grain boundaries has been studied during directional solidification of succinonitrile-based transparent alloys (SCN-0.9wt%DCB). Experimental results show that the grain boundary provides the starting point of morphological instability of the solid-liquid interface. The initial perturbation near the grain boundary is significantly larger than other perturbations on the interface. The initial shape of the interface and the competition between the thermal direction and preferred crystalline orientations determine the subsequent growth pattern selections. The temporal variations of the curvature radius of cell/ridge tips near the grain boundary have also been studied when the instability occurs. This process is divided into three parts. As the pulling velocity increases, dendrites at the grain boundary grow in two different directions to form a bicrystal microstructure. Side branches on either side of the dendrite exhibit different growth patterns.