The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process an...The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process and determine the separation characteristics,the flow field and volume fraction of the oil droplets of the oil-seawater mixed flow under an applied electromagnetic field with different operating conditions were investigated by 2D numerical simulations with the Eulerian model.The results show that:(1)the downward Lorentz force causes seawater to flow downwards and the oil droplets to move upwards due to the electromagnetic separation force in the effective section of the separation channel;(2)the volume fraction of the oil droplets at the top of the outlet section increases with the current density,magnetic field,and the diameter of the oil droplet and decreases with the inlet velocity of the oily seawater.The results provide useful guidance for the design of electromagnetic separation devices of the oil-seawater mixed flow.展开更多
Peirce-Smith copper converting involves complex multiphase flow and mixing.In this work,the flow zone distribution and mixing time in a Peirce-Smith copper converter were investigated in a 1:5 scaled cold model.Flow f...Peirce-Smith copper converting involves complex multiphase flow and mixing.In this work,the flow zone distribution and mixing time in a Peirce-Smith copper converter were investigated in a 1:5 scaled cold model.Flow field distribution,including dead,splashing,and strong-loop zones,were measured,and a dimensionless equation was established to determine the correlation of the effects of stirring and mixing energy with an error of<5%.Four positions in the bath,namely,injection,splashing,strong-loop,and dead zones,were selected to add a hollow salt powder tracer and measure the mixing time.Injecting a quartz flux through tuyeres or into the backflow point of the splashing wave through a chute was recommended instead of adding it through a crane hopper from the top of the furnace to improve the slag-making reaction.展开更多
In this study,particle image velocimetry was applied to investigate flow fields of wormlike micelle(WLM) fluids in a mixing tank equipped with a four-blade,down-pumping,pitched blade turbine. First,the rheology of WLM...In this study,particle image velocimetry was applied to investigate flow fields of wormlike micelle(WLM) fluids in a mixing tank equipped with a four-blade,down-pumping,pitched blade turbine. First,the rheology of WLM fluids was investigated,and the Carreau model was utilized to describe their apparent viscosity. Then,the effects of the rotation speeds and rheological properties on the flow fields were studied using different WLM fluids at different rotation speeds. The results revealed that with increasing Reynolds number,the discharge angle decreases and the carven size increases. Furthermore,elastic effects of WLM fluids lead to a more curved flow and a smaller carven.展开更多
Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly throug...Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter.展开更多
Chaotic mixing is regarded as an effective method to improve the mixing effect in the laminar stirred tank.To generate chaos in flow field in stirred tank,many efforts including aperiodic movement,asystematic installa...Chaotic mixing is regarded as an effective method to improve the mixing effect in the laminar stirred tank.To generate chaos in flow field in stirred tank,many efforts including aperiodic movement,asystematic installation impeller,etc.,were made to save mixing time and energy consumption.The computational fluid dynamics of chaotic flow field and the hyperchaotic controlling method as well as macro-instability were reviewed.Multiple flow field coupling is important in the turbulent mixing region of stirred tank.The development trends of flow field coupling and hyperchaotic controlling in chaotic mixing were prospected in energy saving operation.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
In this study,the low emission combustion technology of Rich-Quench-Lean(RQL)has been applied in Trapped-Vortex Combustor(TVC),and the combinative RQL-TVC shows a promising low emissions performance.By utilizing a que...In this study,the low emission combustion technology of Rich-Quench-Lean(RQL)has been applied in Trapped-Vortex Combustor(TVC),and the combinative RQL-TVC shows a promising low emissions performance.By utilizing a quench orifice plate combined with a bluffbody,a lab-scale RQL-TVC was designed.The flow fields of RQL-TVC were measured by 2-D PIV and predicted by 3-D numerical simulation.Flow structures,radial profiles of normalized mean axial velocity,turbulence intensity and mixing level of the quench zone were analyzed.Results reveal that the dual-vortex and the single-vortex flow patterns both exist in cavities and quench zone of RQL-TVC,and the turbulence intensity is strong in the quench zone with some reverse flows.The spiral vortex was discussed by 3-D streamlines and the detail flow structures of the quench zone were analyzed based on the numerical results.The mixing level of the quench zone was determined,and results show that the quench device enhances the mixing level compared with TVC.Combustion efficiency and emissions performance were investigated experimentally,and results demon-strate that RQL-TVC has relatively higher combustion efficiency and lower emission index of CO,UHC and NO_xthan the same size lab-scale TVC in present work.展开更多
The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each...The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.展开更多
基金The Tianjin Science and Technology Plan Project under contract No.15YFYSGX00010the Tianjin Bureau of Marine Science and Technology Plan Project under contract No.KJXH2015-05
文摘The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process and determine the separation characteristics,the flow field and volume fraction of the oil droplets of the oil-seawater mixed flow under an applied electromagnetic field with different operating conditions were investigated by 2D numerical simulations with the Eulerian model.The results show that:(1)the downward Lorentz force causes seawater to flow downwards and the oil droplets to move upwards due to the electromagnetic separation force in the effective section of the separation channel;(2)the volume fraction of the oil droplets at the top of the outlet section increases with the current density,magnetic field,and the diameter of the oil droplet and decreases with the inlet velocity of the oily seawater.The results provide useful guidance for the design of electromagnetic separation devices of the oil-seawater mixed flow.
基金This work was financially supported by the National Nat-ural Science Foundation of China(No.51974018)the Guangxi Innovation-Driven Development Project(No.AA18242042-1)the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-016A3).
文摘Peirce-Smith copper converting involves complex multiphase flow and mixing.In this work,the flow zone distribution and mixing time in a Peirce-Smith copper converter were investigated in a 1:5 scaled cold model.Flow field distribution,including dead,splashing,and strong-loop zones,were measured,and a dimensionless equation was established to determine the correlation of the effects of stirring and mixing energy with an error of<5%.Four positions in the bath,namely,injection,splashing,strong-loop,and dead zones,were selected to add a hollow salt powder tracer and measure the mixing time.Injecting a quartz flux through tuyeres or into the backflow point of the splashing wave through a chute was recommended instead of adding it through a crane hopper from the top of the furnace to improve the slag-making reaction.
基金supported by Procter & Gamble Technology (Beijing) Co., Ltd
文摘In this study,particle image velocimetry was applied to investigate flow fields of wormlike micelle(WLM) fluids in a mixing tank equipped with a four-blade,down-pumping,pitched blade turbine. First,the rheology of WLM fluids was investigated,and the Carreau model was utilized to describe their apparent viscosity. Then,the effects of the rotation speeds and rheological properties on the flow fields were studied using different WLM fluids at different rotation speeds. The results revealed that with increasing Reynolds number,the discharge angle decreases and the carven size increases. Furthermore,elastic effects of WLM fluids lead to a more curved flow and a smaller carven.
基金financially supported by the Natural Science Foundations of China(No.21206153,21376229)the Excellent Youth Science and Technology Foundation of Province Shanxi of China(No.2014021007)+1 种基金the Natural Science Foundation of Shanxi Province(Grant No.2011021012,2012011008-2)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(201316)
文摘Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter.
基金supported by Natural Science Foundation of China(20806095)ScientificResearch Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(教外司留20091341-2)+1 种基金China Postdoctoral Science Foundation(20080430747)National High Technology Research and Development Program of China(2008AA0312)
文摘Chaotic mixing is regarded as an effective method to improve the mixing effect in the laminar stirred tank.To generate chaos in flow field in stirred tank,many efforts including aperiodic movement,asystematic installation impeller,etc.,were made to save mixing time and energy consumption.The computational fluid dynamics of chaotic flow field and the hyperchaotic controlling method as well as macro-instability were reviewed.Multiple flow field coupling is important in the turbulent mixing region of stirred tank.The development trends of flow field coupling and hyperchaotic controlling in chaotic mixing were prospected in energy saving operation.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
基金the National Natural Science Foundation of China(Nos.51706103,51822605,51776181)the Fundamental Research Funds for the Central Universities,China,(Nos.CEPE2019010,30920031103)+1 种基金the Open Project of State Key Laboratory of Clean Energy Utilization,Zhejiang University,China,(Nos.ZJU-CEU2017011)great support given by the China Scholarship Council(No.201906845024)。
文摘In this study,the low emission combustion technology of Rich-Quench-Lean(RQL)has been applied in Trapped-Vortex Combustor(TVC),and the combinative RQL-TVC shows a promising low emissions performance.By utilizing a quench orifice plate combined with a bluffbody,a lab-scale RQL-TVC was designed.The flow fields of RQL-TVC were measured by 2-D PIV and predicted by 3-D numerical simulation.Flow structures,radial profiles of normalized mean axial velocity,turbulence intensity and mixing level of the quench zone were analyzed.Results reveal that the dual-vortex and the single-vortex flow patterns both exist in cavities and quench zone of RQL-TVC,and the turbulence intensity is strong in the quench zone with some reverse flows.The spiral vortex was discussed by 3-D streamlines and the detail flow structures of the quench zone were analyzed based on the numerical results.The mixing level of the quench zone was determined,and results show that the quench device enhances the mixing level compared with TVC.Combustion efficiency and emissions performance were investigated experimentally,and results demon-strate that RQL-TVC has relatively higher combustion efficiency and lower emission index of CO,UHC and NO_xthan the same size lab-scale TVC in present work.
文摘The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.