Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a“topedown”approach in the production of fine particles.Fine drug particulates are esp...Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a“topedown”approach in the production of fine particles.Fine drug particulates are especially desired in formulations designed for parenteral,respiratory and transdermal use.Most drugs after crystallization may have to be comminuted and this physical transformation is required to various extents,often to enhance processability or solubility especially for drugs with limited aqueous solubility.The mechanisms by which milling enhances drug dissolution and solubility include alterations in the size,specific surface area and shape of the drug particles as well as millinginduced amorphization and/or structural disordering of the drug crystal(mechanochemical activation).Technology advancements in milling now enable the production of drug micro-and nano-particles on a commercial scale with relative ease.This review will provide a background on milling followed by the introduction of common milling techniques employed for the micronization and nanonization of drugs.Salient information contained in the cited examples are further extracted and summarized for ease of reference by researchers keen on employing these techniques for drug solubility and bioavailability enhancement.展开更多
Elementary osmotic pump(EOP)is a unique extended release(ER)drug delivery system based on the principle of osmosis.It has the ability to minimize the amount of the drug,accumulation and fluctuation in drug level durin...Elementary osmotic pump(EOP)is a unique extended release(ER)drug delivery system based on the principle of osmosis.It has the ability to minimize the amount of the drug,accumulation and fluctuation in drug level during chronic uses.Carbamazepine(CBZ),a poorly water-soluble antiepileptic drug,has serious side effects on overdoses and chronic uses.The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance.Firstly,a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug.Then,designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance(ANOVA),respectively.The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone(PVP K30)and sodium lauryl sulfate(SLS).The plasticizer amount and molecular weight(MW)together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane(SPM)thickness inversely influence the release rate.In addition,the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core.Further,orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm.In this study we report the successful formulation of CBZ-EOP tablets,which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80%of CBZ at a rate of approximately zero order for up to 12 h.展开更多
The careful studies have been made into the mutual solubility of water glass and water soluble organic binder in this paper, By means of many experiments, it has been found that water soluble polymer is able to be eve...The careful studies have been made into the mutual solubility of water glass and water soluble organic binder in this paper, By means of many experiments, it has been found that water soluble polymer is able to be evenly soluble in water glass, and certain valuable conclusions have been concluded.展开更多
Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfort...Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfortunately,they generally suffer from serious diffusion and shuttle of polybromide(Br^(-),Br^(3-))due to the weak physical adsorption between soluble polybromide and host carbon materials,which results in low energy efficiency and poor cycling stability.Here,we develop a novel self-capture organic bromine material(1,10-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine,NVBr4)to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications.The quaternary ammonium groups(NV^(4+)ions)can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes,which transforms the conventional“liquid-liquid”conversion of soluble bromide components into“liquid-solid”model and effectively suppresses the shuttle effect.Thereby,the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g^(-1)NVBr4(1 A g^(-1)),excellent rate capability(200 mAh g^(-1)NVBr4 at 20 A g^(-1)),outstanding energy density of 469.6 Wh kg^(-1)and super-stable cycle life(20,000 cycles with 100%Coulombic efficiency),which outperforms most of reported zinc-halogen batteries.Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect.The developed strategy can be extended to other halogen batteries to obtain stable charge storage.展开更多
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz...The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.展开更多
A simulation calculation model for the solubility of insoluble compound MmAa in complex system was established.According to coordination equilibrium principle,relevant dissociation reaction,complexation reaction,self-...A simulation calculation model for the solubility of insoluble compound MmAa in complex system was established.According to coordination equilibrium principle,relevant dissociation reaction,complexation reaction,self-complexation reaction and protonation reaction during insoluble compound dissolving were considered and then the mass balance equations about solubility calculation were obtained.In the case analysis,the solubility of silver chloride in ammonia system was obtained by simulation calculation,and curved surface charts of thermodynamic equilibrium about the total concentration of silver ions,pH and concentration of ammonia ions were drawn correspondingly.The results show that under the conditions of room temperature and 6 mol/L ammonia concentration,the calculated solubility value of silver chloride(34 g/L) is close to the actual value(31 g/L),demonstrating that this model is suitable for solubility calculation of insoluble compound MmAa in the complex system.展开更多
Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the...Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.展开更多
The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of osci...The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.展开更多
The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The ...The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.展开更多
In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and...In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and fabricated,namely air,water,and shear thickening fluid(STF).Quasi-static compression and drop-weight impact experiments were carried out to compare and reveal the static and dynamic mechanical behavior of these structures.The results from drop-weight impact experiments demonstrated that the solid-liquid Kresling origami composite structures exhibited superior yield strength and reduced peak force when compared to their empty counterparts.Notably,the Kresling origami structures filled with STF exhibited significantly heightened yield strength and reduced peak force.For example,at an impact velocity of 3 m/s,the yield strength of single-layer STF-filled Kresling origami structures increased by 772.7%and the peak force decreased by 68.6%.This liquid-solid origami composite design holds the potential to advance the application of origami structures in critical areas such as aerospace,intelligent protection and other important fields.The demonstrated improvements in impact resistance underscore the practical viability of this approach in enhancing structural performance for a range of applications.展开更多
Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid d...Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.展开更多
Myocardial ischemia is a serious threat to human health,and vascular dysfunction is its main cause.Buxu Tongyu(BXTY)Granule is an effective traditional Chinese medicine(TCM)for treating myocardial ischemia.However,the...Myocardial ischemia is a serious threat to human health,and vascular dysfunction is its main cause.Buxu Tongyu(BXTY)Granule is an effective traditional Chinese medicine(TCM)for treating myocardial ischemia.However,the underlying mechanism of BXTY is still unclear.In this study,we demonstrate that BXTY ameliorates myocardial ischemia by activating the soluble guanylate cyclase(sGC)-30,50-cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG)signaling pathway in vascular smooth muscle cells(VSMCs)to dilate the arteries.BXTY was given by gavage for ten consecutive days before establishing an animal model of acute myocardial ischemia in mice via the intraperitoneal injection of pituitrin.The results showed that BXTY alleviated the symptoms of myocardial ischemia induced by pituitrin in mice,including electrocardiogram abnormalities and changes in plasma enzymes.In addition,BXTY dilated pre-constricted blood vessels and inhibited the vasoconstriction of the superior mesenteric artery in a dose-dependent but endothelial-independent manner.These effects were eliminated by preincubating vascular rings with the sGC inhibitors NS 2028 or ODQ,or with the PKG inhibitor KT 5823.Moreover,BXTY increased the protein expression of sGC-b1 and the intracellular second messenger cGMP level in mouse aortic vascular smooth muscle cells(MOVAs).NS 2028 or ODQ reversed these effects of BXTY.The expression level of the cGMP downstream effector protein PKG-1 increased after treating MOVAs with BXTY.NS 2028,ODQ,or KT 5823 also reversed this effect of BXTY.In conclusion,BXTY can improve the symptoms of acute myocardial ischemia in mice,and activating the sGC-cGMP-PKG pathway in VSMCs to induce vasodilation is its key pharmacodynamic mechanism.展开更多
Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)ca...Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)cathode enhances the kinetics of the redox processes of the insulating sulfu r,which also arouses the notorious shuttle effect,leading to serious loss of S species and corrosion of Li anode.To get a balance between the shuttle restraining and the kinetic property,a combined strategy of electrolyte regulation and cathode modification is proposed via introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoroprpyl ether(HFE)instead of 1,2-dimethoxyethane(DME),and SeS_(7)instead of S_8.The introduction of HFE tunes the solvation structure of the LiTFSI and the dissolution of intermediate polysulfides with Se doping(LiPSSes),and optimize the interface stability of the Li anode simultaneously.The minor Se substitution compensates the decrease in kinetic due to the decreased solubility of LiPSs.In this way,the Li-SeS_(7)batteries deliver a reversible capacity of 1062 and 1037 mAh g^(-1)with 2.0 and 5.5 mg SeS_(7)cm^(-2)loading condition,respectively.Besides,an electrolyte-electrode loading model is established to explain the relationship between the optimal electrolyte and cathode loading.It makes more sense to guide the electrolyte design for practical Li-S batteries.展开更多
Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-co...Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-consuming and cost-intensive.There is still a lack of effective theoretical models to accurately describe and predict the biological solubility of drugs to reduce costs.Therefore,in this study,osaprazole and irbesartan were selected as model drugs,and their solubility in solutions containing surfactants and biorelevant media was measured experimentally.By calculating the parameters of each component using the perturbed-chain statistical associating fluid theory(PC-SAFT)model,combined with pH-dependent and micellar solubilization models,the thermodynamic phase behavior of the two drugs was successfully modeled,and the predicted results were in good agreement with the experimental values.These results demonstrate that the model combination used provides important basic parameters and theoretical guidance for the development and screening of poorly soluble drugs and related formulations.展开更多
Short Retraction NoticeThis article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of ...Short Retraction NoticeThis article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
The increasing incidence of cardiovascular disease(CVD)is a significant global health concern,affecting millions of individuals each year.Accurate diagnosis of acute CVD poses a formidable challenge,as misdiagnosis ca...The increasing incidence of cardiovascular disease(CVD)is a significant global health concern,affecting millions of individuals each year.Accurate diagnosis of acute CVD poses a formidable challenge,as misdiagnosis can significantly decrease patient survival rates.Traditional biomarkers have played a vital role in the diagnosis and prognosis of CVDs,but they can be influenced by various factors,such as age,sex,and renal function.Soluble ST2(sST2)is a novel biomarker that is closely associated with different CVDs.Its low reference change value makes it suitable for continuous measurement,unaffected by age,kidney function,and other confounding factors,facilitating risk stratification of CVDs.Furthermore,the combination of sST2 with other biomarkers can enhance diagnostic accuracy and prognostic value.This review aims to provide a comprehensive overview of sST2,focusing on its diagnostic and prognostic value as a myocardial marker for different types of CVDs and discussing the current limitations of sST2.展开更多
Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep...Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep subsurface to shallow aquifers.The stray gas can dissolve in groundwater leading to chemical and biological reactions,which could negatively affect groundwater quality and contribute to atmospheric emissions.The knowledge oflight hydrocarbon solubility in the aqueous environment is essential for the numerical modelling offlow and transport in the subsurface.Herein,we compiled a database containing 2129experimental data of methane,ethane,and propane solubility in pure water and various electrolyte solutions over wide ranges of operating temperature and pressure.Two machine learning algorithms,namely regression tree(RT)and boosted regression tree(BRT)tuned with a Bayesian optimization algorithm(BO)were employed to determine the solubility of gases.The predictions were compared with the experimental data as well as four well-established thermodynamic models.Our analysis shows that the BRT-BO is sufficiently accurate,and the predicted values agree well with those obtained from the thermodynamic models.The coefficient of determination(R2)between experimental and predicted values is 0.99 and the mean squared error(MSE)is 9.97×10^(-8).The leverage statistical approach further confirmed the validity of the model developed.展开更多
In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in a...In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in acetonitrile(ACN)+water in the temperature range of 288.15-333.15 K and in nitric acid(HNO_(3))+water in the temperature range of 298.15-333.15 K were measured by laser dynamic method.The results showed that the solubility of bothβ-HMX and RDX in binary mixed solvents increased monotonously as the temperature increase at a given solvent composition or with increasing of mole fraction of solvent(ACN and nitric acid).Solubility data were well correlated by the modified Apelblat equation,Jouyban-Acree model,Yaws equation and van't Hoff equation,and the Yaws equation achieved the best fitting results according to the relative error and the mean square error root.Furthermore,the solubility ofβ-HMX and RDX in binary mixed solvent was compared,based on the solubility difference and the solvent's own properties,the best separation degree ofβ-HMX and RDX was found when the mole fraction of nitric acid was 0.22 at room temperature,which provided data support for HMX crystallization in mixed solvent.The solubility differences between RDX andβ-HMX in mixed solvents were explained from the formation of intermolecular and intramolecular hydrogen bonds.展开更多
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
文摘Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a“topedown”approach in the production of fine particles.Fine drug particulates are especially desired in formulations designed for parenteral,respiratory and transdermal use.Most drugs after crystallization may have to be comminuted and this physical transformation is required to various extents,often to enhance processability or solubility especially for drugs with limited aqueous solubility.The mechanisms by which milling enhances drug dissolution and solubility include alterations in the size,specific surface area and shape of the drug particles as well as millinginduced amorphization and/or structural disordering of the drug crystal(mechanochemical activation).Technology advancements in milling now enable the production of drug micro-and nano-particles on a commercial scale with relative ease.This review will provide a background on milling followed by the introduction of common milling techniques employed for the micronization and nanonization of drugs.Salient information contained in the cited examples are further extracted and summarized for ease of reference by researchers keen on employing these techniques for drug solubility and bioavailability enhancement.
基金This work was financially supported by the major project of the National Science and Technology of China for new drugs development(2009ZX09310-004).
文摘Elementary osmotic pump(EOP)is a unique extended release(ER)drug delivery system based on the principle of osmosis.It has the ability to minimize the amount of the drug,accumulation and fluctuation in drug level during chronic uses.Carbamazepine(CBZ),a poorly water-soluble antiepileptic drug,has serious side effects on overdoses and chronic uses.The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance.Firstly,a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug.Then,designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance(ANOVA),respectively.The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone(PVP K30)and sodium lauryl sulfate(SLS).The plasticizer amount and molecular weight(MW)together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane(SPM)thickness inversely influence the release rate.In addition,the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core.Further,orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm.In this study we report the successful formulation of CBZ-EOP tablets,which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80%of CBZ at a rate of approximately zero order for up to 12 h.
文摘The careful studies have been made into the mutual solubility of water glass and water soluble organic binder in this paper, By means of many experiments, it has been found that water soluble polymer is able to be evenly soluble in water glass, and certain valuable conclusions have been concluded.
基金the Guangdong Basic and Applied Basic Research Foundation(grant number:2019A1515011819,2021B1515120004)National Natural Science Foundation of China(22005207)Open Research Fund of Songshan Lake Materials Laboratory(2021SLABFN04).
文摘Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfortunately,they generally suffer from serious diffusion and shuttle of polybromide(Br^(-),Br^(3-))due to the weak physical adsorption between soluble polybromide and host carbon materials,which results in low energy efficiency and poor cycling stability.Here,we develop a novel self-capture organic bromine material(1,10-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine,NVBr4)to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications.The quaternary ammonium groups(NV^(4+)ions)can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes,which transforms the conventional“liquid-liquid”conversion of soluble bromide components into“liquid-solid”model and effectively suppresses the shuttle effect.Thereby,the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g^(-1)NVBr4(1 A g^(-1)),excellent rate capability(200 mAh g^(-1)NVBr4 at 20 A g^(-1)),outstanding energy density of 469.6 Wh kg^(-1)and super-stable cycle life(20,000 cycles with 100%Coulombic efficiency),which outperforms most of reported zinc-halogen batteries.Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect.The developed strategy can be extended to other halogen batteries to obtain stable charge storage.
基金the financial support from the National Key Research and Development Program of China(2022YFB4101302-01)the National Natural Science Foundation of China(22178243)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-22–02).
文摘The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.
基金Project(2007CB613604) supported by the National Basic Research Program of China
文摘A simulation calculation model for the solubility of insoluble compound MmAa in complex system was established.According to coordination equilibrium principle,relevant dissociation reaction,complexation reaction,self-complexation reaction and protonation reaction during insoluble compound dissolving were considered and then the mass balance equations about solubility calculation were obtained.In the case analysis,the solubility of silver chloride in ammonia system was obtained by simulation calculation,and curved surface charts of thermodynamic equilibrium about the total concentration of silver ions,pH and concentration of ammonia ions were drawn correspondingly.The results show that under the conditions of room temperature and 6 mol/L ammonia concentration,the calculated solubility value of silver chloride(34 g/L) is close to the actual value(31 g/L),demonstrating that this model is suitable for solubility calculation of insoluble compound MmAa in the complex system.
基金financial support from National Natural Science Foundation of China (22288102)the Fundamental Research Funds for the Central Universities of China (buctrc202016)。
文摘Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.
文摘The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.
基金supported by the National Key Research and Development Program of China(2021YFC2103800)the National Natural Science Foundation of China(U21A20301)the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2022RCZX004 and IZQ2021RCZX015)。
文摘The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302151 and 52105575)the BIT Research and Innovation Promoting Project(Grant No.2023YCXY049)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.QTZX23063)the Aeronautical Science Foundation of China(Grant No.2022Z073081001)the Open Research Funds of State Key Laboratory of Intelligent Manufacturing Equipment and Technology(Grant No.IMETKF2024008).
文摘In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and fabricated,namely air,water,and shear thickening fluid(STF).Quasi-static compression and drop-weight impact experiments were carried out to compare and reveal the static and dynamic mechanical behavior of these structures.The results from drop-weight impact experiments demonstrated that the solid-liquid Kresling origami composite structures exhibited superior yield strength and reduced peak force when compared to their empty counterparts.Notably,the Kresling origami structures filled with STF exhibited significantly heightened yield strength and reduced peak force.For example,at an impact velocity of 3 m/s,the yield strength of single-layer STF-filled Kresling origami structures increased by 772.7%and the peak force decreased by 68.6%.This liquid-solid origami composite design holds the potential to advance the application of origami structures in critical areas such as aerospace,intelligent protection and other important fields.The demonstrated improvements in impact resistance underscore the practical viability of this approach in enhancing structural performance for a range of applications.
基金financially supported by the National Natural Science Foundation of China(No.51974018the Open Foundation of the State Key Laboratory of Process Automation in Mining and Metallurgy(No.BGRIMM-KZSKL-2022-9).
文摘Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.
基金supported by the National Natural Science Foundation of China(81870259,82170431,81903608,and U21A20339)the CAMS Innovation Fund for Medical Sciences(CIFMS+1 种基金2019-I2M-5-078)the Postdoctoral Research Foundation of Heilongjiang Province(LBH-Q20148).
文摘Myocardial ischemia is a serious threat to human health,and vascular dysfunction is its main cause.Buxu Tongyu(BXTY)Granule is an effective traditional Chinese medicine(TCM)for treating myocardial ischemia.However,the underlying mechanism of BXTY is still unclear.In this study,we demonstrate that BXTY ameliorates myocardial ischemia by activating the soluble guanylate cyclase(sGC)-30,50-cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG)signaling pathway in vascular smooth muscle cells(VSMCs)to dilate the arteries.BXTY was given by gavage for ten consecutive days before establishing an animal model of acute myocardial ischemia in mice via the intraperitoneal injection of pituitrin.The results showed that BXTY alleviated the symptoms of myocardial ischemia induced by pituitrin in mice,including electrocardiogram abnormalities and changes in plasma enzymes.In addition,BXTY dilated pre-constricted blood vessels and inhibited the vasoconstriction of the superior mesenteric artery in a dose-dependent but endothelial-independent manner.These effects were eliminated by preincubating vascular rings with the sGC inhibitors NS 2028 or ODQ,or with the PKG inhibitor KT 5823.Moreover,BXTY increased the protein expression of sGC-b1 and the intracellular second messenger cGMP level in mouse aortic vascular smooth muscle cells(MOVAs).NS 2028 or ODQ reversed these effects of BXTY.The expression level of the cGMP downstream effector protein PKG-1 increased after treating MOVAs with BXTY.NS 2028,ODQ,or KT 5823 also reversed this effect of BXTY.In conclusion,BXTY can improve the symptoms of acute myocardial ischemia in mice,and activating the sGC-cGMP-PKG pathway in VSMCs to induce vasodilation is its key pharmacodynamic mechanism.
基金supported by the National Natural Science Foundation of China(22075091)the Natural Science Foundation of Hubei Province(Grant No.2021CFA066)。
文摘Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)cathode enhances the kinetics of the redox processes of the insulating sulfu r,which also arouses the notorious shuttle effect,leading to serious loss of S species and corrosion of Li anode.To get a balance between the shuttle restraining and the kinetic property,a combined strategy of electrolyte regulation and cathode modification is proposed via introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoroprpyl ether(HFE)instead of 1,2-dimethoxyethane(DME),and SeS_(7)instead of S_8.The introduction of HFE tunes the solvation structure of the LiTFSI and the dissolution of intermediate polysulfides with Se doping(LiPSSes),and optimize the interface stability of the Li anode simultaneously.The minor Se substitution compensates the decrease in kinetic due to the decreased solubility of LiPSs.In this way,the Li-SeS_(7)batteries deliver a reversible capacity of 1062 and 1037 mAh g^(-1)with 2.0 and 5.5 mg SeS_(7)cm^(-2)loading condition,respectively.Besides,an electrolyte-electrode loading model is established to explain the relationship between the optimal electrolyte and cathode loading.It makes more sense to guide the electrolyte design for practical Li-S batteries.
基金the financial support from the National Natural Science Foundation of China(22278070,21978047,21776046)。
文摘Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-consuming and cost-intensive.There is still a lack of effective theoretical models to accurately describe and predict the biological solubility of drugs to reduce costs.Therefore,in this study,osaprazole and irbesartan were selected as model drugs,and their solubility in solutions containing surfactants and biorelevant media was measured experimentally.By calculating the parameters of each component using the perturbed-chain statistical associating fluid theory(PC-SAFT)model,combined with pH-dependent and micellar solubilization models,the thermodynamic phase behavior of the two drugs was successfully modeled,and the predicted results were in good agreement with the experimental values.These results demonstrate that the model combination used provides important basic parameters and theoretical guidance for the development and screening of poorly soluble drugs and related formulations.
文摘Short Retraction NoticeThis article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
文摘The increasing incidence of cardiovascular disease(CVD)is a significant global health concern,affecting millions of individuals each year.Accurate diagnosis of acute CVD poses a formidable challenge,as misdiagnosis can significantly decrease patient survival rates.Traditional biomarkers have played a vital role in the diagnosis and prognosis of CVDs,but they can be influenced by various factors,such as age,sex,and renal function.Soluble ST2(sST2)is a novel biomarker that is closely associated with different CVDs.Its low reference change value makes it suitable for continuous measurement,unaffected by age,kidney function,and other confounding factors,facilitating risk stratification of CVDs.Furthermore,the combination of sST2 with other biomarkers can enhance diagnostic accuracy and prognostic value.This review aims to provide a comprehensive overview of sST2,focusing on its diagnostic and prognostic value as a myocardial marker for different types of CVDs and discussing the current limitations of sST2.
文摘Hydraulic fracturing is an effective technology for hydrocarbon extraction from unconventional shale and tight gas reservoirs.A potential risk of hydraulic fracturing is the upward migration of stray gas from the deep subsurface to shallow aquifers.The stray gas can dissolve in groundwater leading to chemical and biological reactions,which could negatively affect groundwater quality and contribute to atmospheric emissions.The knowledge oflight hydrocarbon solubility in the aqueous environment is essential for the numerical modelling offlow and transport in the subsurface.Herein,we compiled a database containing 2129experimental data of methane,ethane,and propane solubility in pure water and various electrolyte solutions over wide ranges of operating temperature and pressure.Two machine learning algorithms,namely regression tree(RT)and boosted regression tree(BRT)tuned with a Bayesian optimization algorithm(BO)were employed to determine the solubility of gases.The predictions were compared with the experimental data as well as four well-established thermodynamic models.Our analysis shows that the BRT-BO is sufficiently accurate,and the predicted values agree well with those obtained from the thermodynamic models.The coefficient of determination(R2)between experimental and predicted values is 0.99 and the mean squared error(MSE)is 9.97×10^(-8).The leverage statistical approach further confirmed the validity of the model developed.
文摘In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in acetonitrile(ACN)+water in the temperature range of 288.15-333.15 K and in nitric acid(HNO_(3))+water in the temperature range of 298.15-333.15 K were measured by laser dynamic method.The results showed that the solubility of bothβ-HMX and RDX in binary mixed solvents increased monotonously as the temperature increase at a given solvent composition or with increasing of mole fraction of solvent(ACN and nitric acid).Solubility data were well correlated by the modified Apelblat equation,Jouyban-Acree model,Yaws equation and van't Hoff equation,and the Yaws equation achieved the best fitting results according to the relative error and the mean square error root.Furthermore,the solubility ofβ-HMX and RDX in binary mixed solvent was compared,based on the solubility difference and the solvent's own properties,the best separation degree ofβ-HMX and RDX was found when the mole fraction of nitric acid was 0.22 at room temperature,which provided data support for HMX crystallization in mixed solvent.The solubility differences between RDX andβ-HMX in mixed solvents were explained from the formation of intermolecular and intramolecular hydrogen bonds.
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.