Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the ...Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the endogenous metabolome.In this study,solid-phase microextraction(SPME)fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue.Following SPME,a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metabolomics analysis and confirm the advantages of in vivo SPME metabolomics.The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME.Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples.In addition,principal component analysis revealed separated clustering among all the three sample groups,indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method.Furthermore,clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures.Specifically,a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples(P<0.05)using mixed-mode SPME fibers.These changes were probably due to the disruptive homogenization of the tissue.This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.展开更多
Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon ...Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon electrocatalysts remains challenging.Herein,a low-cost and simple route is developed to synthesize defective graphene by pyrolyzing the mixture of glucose and carbon nitride.Molecular dynamics simulations reveal that the graphene formation is ascribed to two-dimensional layered feature of carbon nitride,and high compatibility of carbon nitride/glucose systems.Structural measurements suggest that the graphene possesses rich edge and topological defects.The graphene catalyst exhibits higher power density than commercial Pt/C catalyst in a primary Zn-air battery.Combining experimental results and theoretical thermodynamic analysis,it is identified that graphitic nitrogen-modified topological defects at carbon framework edges are responsible for the decent ORR performance.The strategy presented in this work can be can be scaled up readily to fabricate defective carbon materials.展开更多
The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution r...The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2).展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
Leaves are the main organ for photosynthesis and organic synthesis in cotton.Leaf shape has important effects on photosynthetic efficiency and canopy formation,thereby affecting cotton yield.Previous studies have show...Leaves are the main organ for photosynthesis and organic synthesis in cotton.Leaf shape has important effects on photosynthetic efficiency and canopy formation,thereby affecting cotton yield.Previous studies have shown that LMI1(LATE MERISTEM IDENTITY1)is the main gene regulating leaf shape.In this study,the LMI1 gene was inserted into the 35S promoter expression vector,and cotton plants overexpressing LMI1(OE)were obtained through genetic transformation.Statistical analysis of the biological traits of the T_(1) and T_(2) populations showed that compared to the wild type(WT),OE plants had significantly larger leaves,thicker stems and significantly greater dry weight.Furthermore,plant sections of the main vein and petiole showed that the numbers of cells in those tissues of OE plants were significantly greater.In addition,RNA-seq analysis revealed the differential expression of genes related to gibberellin synthesis and NAC gene family(genes containing the NAC domain)between the OE and WT plants,suggesting that LMI1 is involved in secondary wall formation and cell proliferation,which promotes stem thickening.Moreover,Gene Ontology(GO)analysis revealed enrichment in the terms of calcium ion binding,and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis showed enrichment in the terms of fatty acid degradation,phosphatidylinositol signal transduction system,and c AMP(cyclic adenosine monophosphate)signal pathway.These results suggested that LMI1 OE plants are responsive to gibberellin hormone signals,and have altered messenger signals(c AMP,Ca^(2+))which amplify this function,to promote stronger aboveground vegetative growth.This study found the LMI1 greatly increased the vegetative growth in cotton,which is the basic requirement for higher yield.展开更多
The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as b...The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma.In recent years,our lab has developed three novel SPME-MS techniques:SPME-microfluidic open interface-MS(SPME-MOI-MS),coated blade spray-MS(CBS-MS),and SPME-probe electrospray ionization-MS(SPME-PESI-MS).The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing.However,all these three techniques utilize different SPME geometries and were tested with different MS instruments.Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application.This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers,CBS blades,and SPME-PESI probes and SPME-liquid chromatography-MS(SPME-LC-MS)for the analysis of drugs of abuse using the same MS instrument.Furthermore,for the first time,we developed different desorption chambers for MOI-MS for coupling with SPME fibers,CBS blades,and SPME-PESI probes,thus illustrating the universality of this approach.In total,eight analytical methods were developed,with the experimental data showing that all the SPME-based methods provided good analytical performance with R^(2)of linearities larger than 0.9925,accuracies between 81%and 118%,and good precision with an RSD%≤13%.展开更多
Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improv...Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improved the feed intake and weight gain of sheep.However,it remains unclear why feeding BF to sheep increased their feed intake and weight gain.Therefore,the purposes of this research were to investigate how the rumen micro-biota and serum metabolome are dynamically changing after feeding BF,as well as how their changes influence the feed intake,digestibility,nutrient transport,meat quality and growth performances of sheep.Twelve growing Hu sheep were allocated into 3 groups:alfalfa hay fed group(AH:positive control),rice straw fed group(RS:negative control)and BF fed group(BF:treatment).Samples of rumen content,blood,rumen epithelium,muscle,feed offered and refusals were collected for the subsequent analysis.Results Feeding BF changed the microbial community and rumen fermentation,particularly increasing(P<0.05)relative abundance of Prevotella and propionate production,and decreasing(P<0.05)enteric methane yield.The histomorphology(height,width,area and thickness)of rumen papillae and gene expression for carbohydrate trans-port(MCT1),tight junction(claudin-1,claudin-4),and cell proliferation(CDK4,Cyclin A2,Cyclin E1)were improved(P<0.05)in sheep fed BF.Additionally,serum metabolome was also dynamically changed,which led to up-regulating(P<0.05)the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF.As a result,the higher(P<0.05)feed intake,digestibility,growth rate,feed efficiency,meat quality and mono-unsaturated fatty acid concentration in muscle,and the lower(P<0.05)feed cost per kg of live weight were achieved by feeding BF.Conclusions Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost.Therefore,bio-fermentation of rice straw could be an innovative way for improving ruminant production with mini-mizing production costs.展开更多
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to...Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.展开更多
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control ...With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.展开更多
Perovskite is a magic material with a structure similar to calcium titanate(CaTi03).Among perovskite materials,halide perovskite has gained considerable attention owing to its superior semiconducting properties such a...Perovskite is a magic material with a structure similar to calcium titanate(CaTi03).Among perovskite materials,halide perovskite has gained considerable attention owing to its superior semiconducting properties such as direct band gap and relatively small effective mass of electrons and holes.In recent years,the power conversion efficiency of halide perovskite solar cells has been continuously refreshed.The growth of bulk halide perovskite single crystals(PSCs)has become crucial to the investigation of their intrinsic properties.In the entire preparation process,the growth method generally plays a significant role,which determines the quality and size of the target PSCs.In this review,we summarized the existing mainstream synthetic methods for growing bulk PSCs including solution and solid-phase methods.We discussed the characteristics of these methods and the influence of the growth parameters on the quality and size of the resulting PSCs.Moreover,we briefly introduce the applications of PSCs as semiconductors in photodetectors and gas sensors.Understanding the growth behaviors of PSCs is insightful for future research on their synthesis and applications.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemis...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.展开更多
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho...Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and ...Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.展开更多
In recent years,growth hormone and insulin-like growth factors have become key regulators of bone metabolism and remodeling,crucial for maintaining healthy bone mass throughout life.Studies have shown that adult growt...In recent years,growth hormone and insulin-like growth factors have become key regulators of bone metabolism and remodeling,crucial for maintaining healthy bone mass throughout life.Studies have shown that adult growth hormone deficiency leads to alterations in bone remodeling,significantly affecting bone microarchitecture and increasing fracture risk.Although recombinant human growth hormone replacement therapy can mitigate these adverse effects,improving bone density,and reduce fracture risk,its effectiveness in treating osteoporosis,especially in adults with established growth hormone deficiency,seems limited.Bisphosphonates inhibit bone resorption by targeting farnesyl pyrophosphate synthase in osteoclasts,and clinical trials have confirmed their efficacy in improving osteoporosis.Therefore,for adult growth hormone deficiency patients with osteoporosis,the use of bisphosphonates alongside growth hormone replacement therapy is recommended.展开更多
The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<su...The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<sub>2</sub> (5 nm and 10 nm) applied to seeds and the seedlings as a foliar application on various aspects of growth characteristics and biomass accumulation in lettuce (Lactuca sativa, cv. Grand Rapids). Application of 10 nm nTiO<sub>2</sub> to seeds through imbibition resulted in a significant reduction in shoot biomass accumulation while 5 nm nTiO<sub>2</sub> did not affect the biomass accumulation in lettuce. The application of 10 nm nTiO<sub>2</sub> reduced the fresh shoot biomass accumulation by about 18% compared to the control plants. Other growth characteristics such as shoot dry biomass, root fresh and dry biomass, plant height, and leaf area were not affected by the application of both 5 nm and 10 nm nTiO<sub>2</sub>. In addition, foliar application of these nanoparticles to the lettuce seedlings did not have a significant effect on most of the growth parameters examined, and the increasing concentration ranging from 5 nm/L to 400 mg/L did not produce a consistent response in lettuce. Thus, nTiO<sub>2</sub> application to lettuce seeds had a notable negative impact on shoot growth while foliar application did not have a significant effect on many plant growth characteristics. However, foliar applications produced some symptoms of toxicity to the foliage in the form of necrotic or chlorotic patches on the leaves, which were more pronounced with increasing concentrations of both 5 nm and 10 nm nTiO<sub>2</sub>. However, these symptoms were apparent at a concentration as low as 50 mg/L of nTiO<sub>2</sub>. Thus, foliar application of nTiO<sub>2</sub> may not have a significant impact on many of the growth characteristics in lettuce, but it can result in foliar toxicity.展开更多
In most farming systems newly introduced commercial fertilizers to be accepted, adopted and used by farmers, their effectiveness and appropriate application rates must be exhibited. This study was conducted to validat...In most farming systems newly introduced commercial fertilizers to be accepted, adopted and used by farmers, their effectiveness and appropriate application rates must be exhibited. This study was conducted to validate the effect and rates of a bio-fertilizer (super agric) on oil palm seedling growth. The trial was laid out in a randomized complete block design (RCBD) with three application rates of 0, 4 and 8 ml/L of water (treatments) replicated thrice. Following the application of super agric to oil palm seedlings for a period of six months, observations drawn from the analysis of growth data were as follows: Three months after treatment, super agric significantly (P < 0.05) increased the height and breadth of oil palm seedling compared to those which were not applied with super agric. The results also showed that when super agric was applied at a rate of 4 ml/L, the leaf length and breadth were higher compared to the control were super agric was not used. Furthermore, applications of super agric improved oil palm seedling nitrogen uptake by 31% in treatment groups as compared to the control which explained the height and breadth increase in the oil palm seedlings that were applied with super agric. On the other hand, the effect of super agric application on phosphorus uptake by seedlings was not significant. Although the height, breadth, leaf width and length were all significantly affected by super agric application, the number of oil palm leaves and spears were not affected for the period the experiment was conducted. Six months after application of super agric the growth of oil palm seedlings was favorably impacted, hence we recommend super agric to be promoted among oil palm seedling growers.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada,NSERC(Grant No.:IRCPJ 184412-15).
文摘Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the endogenous metabolome.In this study,solid-phase microextraction(SPME)fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue.Following SPME,a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metabolomics analysis and confirm the advantages of in vivo SPME metabolomics.The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME.Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples.In addition,principal component analysis revealed separated clustering among all the three sample groups,indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method.Furthermore,clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures.Specifically,a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples(P<0.05)using mixed-mode SPME fibers.These changes were probably due to the disruptive homogenization of the tissue.This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.
基金supported by the National Natural Science Foundation of China(21838003,91834301 and 21978278)the Shanghai Scientific and Technological Innovation Project(18JC1410500 and 19JC1410400)the Fundamental Research Funds for the Central Universities(222201718002).
文摘Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon electrocatalysts remains challenging.Herein,a low-cost and simple route is developed to synthesize defective graphene by pyrolyzing the mixture of glucose and carbon nitride.Molecular dynamics simulations reveal that the graphene formation is ascribed to two-dimensional layered feature of carbon nitride,and high compatibility of carbon nitride/glucose systems.Structural measurements suggest that the graphene possesses rich edge and topological defects.The graphene catalyst exhibits higher power density than commercial Pt/C catalyst in a primary Zn-air battery.Combining experimental results and theoretical thermodynamic analysis,it is identified that graphitic nitrogen-modified topological defects at carbon framework edges are responsible for the decent ORR performance.The strategy presented in this work can be can be scaled up readily to fabricate defective carbon materials.
基金This work was financially supported by the National Natural Science Foundation of China (52122308,21905253,51973200)the Natural Science Foundation of Henan (202300410372).
文摘The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2).
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
基金supported by the National Natural Science Foundation of China(5201101621)。
文摘Leaves are the main organ for photosynthesis and organic synthesis in cotton.Leaf shape has important effects on photosynthetic efficiency and canopy formation,thereby affecting cotton yield.Previous studies have shown that LMI1(LATE MERISTEM IDENTITY1)is the main gene regulating leaf shape.In this study,the LMI1 gene was inserted into the 35S promoter expression vector,and cotton plants overexpressing LMI1(OE)were obtained through genetic transformation.Statistical analysis of the biological traits of the T_(1) and T_(2) populations showed that compared to the wild type(WT),OE plants had significantly larger leaves,thicker stems and significantly greater dry weight.Furthermore,plant sections of the main vein and petiole showed that the numbers of cells in those tissues of OE plants were significantly greater.In addition,RNA-seq analysis revealed the differential expression of genes related to gibberellin synthesis and NAC gene family(genes containing the NAC domain)between the OE and WT plants,suggesting that LMI1 is involved in secondary wall formation and cell proliferation,which promotes stem thickening.Moreover,Gene Ontology(GO)analysis revealed enrichment in the terms of calcium ion binding,and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis showed enrichment in the terms of fatty acid degradation,phosphatidylinositol signal transduction system,and c AMP(cyclic adenosine monophosphate)signal pathway.These results suggested that LMI1 OE plants are responsive to gibberellin hormone signals,and have altered messenger signals(c AMP,Ca^(2+))which amplify this function,to promote stronger aboveground vegetative growth.This study found the LMI1 greatly increased the vegetative growth in cotton,which is the basic requirement for higher yield.
基金the National Science Centre,Poland(Grant No.:2020/04/X/NZ9/01281).
文摘The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma.In recent years,our lab has developed three novel SPME-MS techniques:SPME-microfluidic open interface-MS(SPME-MOI-MS),coated blade spray-MS(CBS-MS),and SPME-probe electrospray ionization-MS(SPME-PESI-MS).The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing.However,all these three techniques utilize different SPME geometries and were tested with different MS instruments.Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application.This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers,CBS blades,and SPME-PESI probes and SPME-liquid chromatography-MS(SPME-LC-MS)for the analysis of drugs of abuse using the same MS instrument.Furthermore,for the first time,we developed different desorption chambers for MOI-MS for coupling with SPME fibers,CBS blades,and SPME-PESI probes,thus illustrating the universality of this approach.In total,eight analytical methods were developed,with the experimental data showing that all the SPME-based methods provided good analytical performance with R^(2)of linearities larger than 0.9925,accuracies between 81%and 118%,and good precision with an RSD%≤13%.
基金This research was supported by the National Natural Science Foundation of China(32061143034,32161143028)Tibet Regional Science and Technology Collaborative Innovation Project(QYXTZX-NQ2021-01)Fundamental Research Funds for the Central Universities(lzujbky-2022-ct04).
文摘Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improved the feed intake and weight gain of sheep.However,it remains unclear why feeding BF to sheep increased their feed intake and weight gain.Therefore,the purposes of this research were to investigate how the rumen micro-biota and serum metabolome are dynamically changing after feeding BF,as well as how their changes influence the feed intake,digestibility,nutrient transport,meat quality and growth performances of sheep.Twelve growing Hu sheep were allocated into 3 groups:alfalfa hay fed group(AH:positive control),rice straw fed group(RS:negative control)and BF fed group(BF:treatment).Samples of rumen content,blood,rumen epithelium,muscle,feed offered and refusals were collected for the subsequent analysis.Results Feeding BF changed the microbial community and rumen fermentation,particularly increasing(P<0.05)relative abundance of Prevotella and propionate production,and decreasing(P<0.05)enteric methane yield.The histomorphology(height,width,area and thickness)of rumen papillae and gene expression for carbohydrate trans-port(MCT1),tight junction(claudin-1,claudin-4),and cell proliferation(CDK4,Cyclin A2,Cyclin E1)were improved(P<0.05)in sheep fed BF.Additionally,serum metabolome was also dynamically changed,which led to up-regulating(P<0.05)the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF.As a result,the higher(P<0.05)feed intake,digestibility,growth rate,feed efficiency,meat quality and mono-unsaturated fatty acid concentration in muscle,and the lower(P<0.05)feed cost per kg of live weight were achieved by feeding BF.Conclusions Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost.Therefore,bio-fermentation of rice straw could be an innovative way for improving ruminant production with mini-mizing production costs.
基金supported by the National Natural Science Foundation of China,Nos.31971277 and 31950410551(both to DY)。
文摘Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
基金supported by the Humanities and Social Sciences Program of Jiangxi Universities(Grant No.GL21129)the Graduate Student Innovation Fund Program of Gannan Normal University(Grant No.YCX23A043)the Open Subject of Geography Discipline Construction of Gannan Normal University(Grant No.200084).
文摘With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.
基金the National Natural Science Foundation of China(Grant No.61875119)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,Shanghai Rising-Star Program(Grant No.19QA1404000)Shanghai Talent Development Fund,and the "Chen Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(Grant No.18CG63).
文摘Perovskite is a magic material with a structure similar to calcium titanate(CaTi03).Among perovskite materials,halide perovskite has gained considerable attention owing to its superior semiconducting properties such as direct band gap and relatively small effective mass of electrons and holes.In recent years,the power conversion efficiency of halide perovskite solar cells has been continuously refreshed.The growth of bulk halide perovskite single crystals(PSCs)has become crucial to the investigation of their intrinsic properties.In the entire preparation process,the growth method generally plays a significant role,which determines the quality and size of the target PSCs.In this review,we summarized the existing mainstream synthetic methods for growing bulk PSCs including solution and solid-phase methods.We discussed the characteristics of these methods and the influence of the growth parameters on the quality and size of the resulting PSCs.Moreover,we briefly introduce the applications of PSCs as semiconductors in photodetectors and gas sensors.Understanding the growth behaviors of PSCs is insightful for future research on their synthesis and applications.
基金the Suzhou Medical Center,No.Szlcyxzx202103the National Natural Science Foundation of China,No.82171828+9 种基金the Key R&D Plan of Jiangsu Province(Social Development),No.BE2021652the Subject Construction Support Project of The Second Affiliated Hospital of Soochow University,No.XKTJHRC20210011Wu Jieping Medical Foundation,No.320.6750.2021-01-12the Special Project of“Technological Innovation”Project of CNNC Medical Industry Co.Ltd,No.ZHYLTD2021001Suzhou Science and Education Health Project,No.KJXW2021018Foundation of Chinese Society of Clinical Oncology,No.Y-pierrefabre202102-0113Beijing Bethune Charitable Foundation,No.STLKY0016Research Projects of China Baoyuan Investment Co.,No.270004Suzhou Gusu Health Talent Program,No.GSWS2022028Open Project of State Key Laboratory of Radiation Medicine and Protection of Soochow University,No.GZN1202302.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.
基金supported by the Shandong Province Natural Science Foundation Youth Branch(ZR2023QC157)the National Natural Science Foundation of China(51979233)+1 种基金the Key Research and Development Project of Shaanxi Province(2022KW-47,2022NY-220)the Heze University Doctoral Research Fund(XY21BS24,XY22BS17).
文摘Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
文摘Diabetes affects about 422 million people worldwide,causing 1.5 million deaths each year.However,the incidence of diabetes is increasing,including several types of diabetes.Type 1 diabetes(5%-10%of diabetic cases)and type 2 diabetes(90%-95%of diabetic cases)are the main types of diabetes in the clinic.Accumulating evidence shows that the fibroblast growth factor(FGF)family plays important roles in many metabolic disorders,including type 1 and type 2 diabetes.FGF consists of 23 family members(FGF-1-23)in humans.Here,we review current findings of FGFs in the treatment of diabetes and management of diabetic complications.Some FGFs(e.g.,FGF-15,FGF-19,and FGF-21)have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes,and their therapeutic roles in diabetes are currently under investigation in clinical trials.Overall,the roles of FGFs in diabetes and diabetic complications are involved in numerous processes.First,FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production.Second,modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components,promote diabetic wound healing process and bone repair,and inhibit cancer cell proliferation and migration.Finally,FGFs can regulate the activation of glucoseexcited neurons and the expression of thermogenic genes.
基金This work was supported by the Special Project of Performance Incentive and Guidance for Scientific Research Institutions of Chongqing,China (jxyn2022-5)。
文摘In recent years,growth hormone and insulin-like growth factors have become key regulators of bone metabolism and remodeling,crucial for maintaining healthy bone mass throughout life.Studies have shown that adult growth hormone deficiency leads to alterations in bone remodeling,significantly affecting bone microarchitecture and increasing fracture risk.Although recombinant human growth hormone replacement therapy can mitigate these adverse effects,improving bone density,and reduce fracture risk,its effectiveness in treating osteoporosis,especially in adults with established growth hormone deficiency,seems limited.Bisphosphonates inhibit bone resorption by targeting farnesyl pyrophosphate synthase in osteoclasts,and clinical trials have confirmed their efficacy in improving osteoporosis.Therefore,for adult growth hormone deficiency patients with osteoporosis,the use of bisphosphonates alongside growth hormone replacement therapy is recommended.
文摘The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<sub>2</sub> (5 nm and 10 nm) applied to seeds and the seedlings as a foliar application on various aspects of growth characteristics and biomass accumulation in lettuce (Lactuca sativa, cv. Grand Rapids). Application of 10 nm nTiO<sub>2</sub> to seeds through imbibition resulted in a significant reduction in shoot biomass accumulation while 5 nm nTiO<sub>2</sub> did not affect the biomass accumulation in lettuce. The application of 10 nm nTiO<sub>2</sub> reduced the fresh shoot biomass accumulation by about 18% compared to the control plants. Other growth characteristics such as shoot dry biomass, root fresh and dry biomass, plant height, and leaf area were not affected by the application of both 5 nm and 10 nm nTiO<sub>2</sub>. In addition, foliar application of these nanoparticles to the lettuce seedlings did not have a significant effect on most of the growth parameters examined, and the increasing concentration ranging from 5 nm/L to 400 mg/L did not produce a consistent response in lettuce. Thus, nTiO<sub>2</sub> application to lettuce seeds had a notable negative impact on shoot growth while foliar application did not have a significant effect on many plant growth characteristics. However, foliar applications produced some symptoms of toxicity to the foliage in the form of necrotic or chlorotic patches on the leaves, which were more pronounced with increasing concentrations of both 5 nm and 10 nm nTiO<sub>2</sub>. However, these symptoms were apparent at a concentration as low as 50 mg/L of nTiO<sub>2</sub>. Thus, foliar application of nTiO<sub>2</sub> may not have a significant impact on many of the growth characteristics in lettuce, but it can result in foliar toxicity.
文摘In most farming systems newly introduced commercial fertilizers to be accepted, adopted and used by farmers, their effectiveness and appropriate application rates must be exhibited. This study was conducted to validate the effect and rates of a bio-fertilizer (super agric) on oil palm seedling growth. The trial was laid out in a randomized complete block design (RCBD) with three application rates of 0, 4 and 8 ml/L of water (treatments) replicated thrice. Following the application of super agric to oil palm seedlings for a period of six months, observations drawn from the analysis of growth data were as follows: Three months after treatment, super agric significantly (P < 0.05) increased the height and breadth of oil palm seedling compared to those which were not applied with super agric. The results also showed that when super agric was applied at a rate of 4 ml/L, the leaf length and breadth were higher compared to the control were super agric was not used. Furthermore, applications of super agric improved oil palm seedling nitrogen uptake by 31% in treatment groups as compared to the control which explained the height and breadth increase in the oil palm seedlings that were applied with super agric. On the other hand, the effect of super agric application on phosphorus uptake by seedlings was not significant. Although the height, breadth, leaf width and length were all significantly affected by super agric application, the number of oil palm leaves and spears were not affected for the period the experiment was conducted. Six months after application of super agric the growth of oil palm seedlings was favorably impacted, hence we recommend super agric to be promoted among oil palm seedling growers.