Hydrogen storage and delivery technology is still a bottleneck in the hydrogen industry chain.Among all kinds of hydrogen storage methods,light-weight solid-state hydrogen storage(LSHS)materials could become promising...Hydrogen storage and delivery technology is still a bottleneck in the hydrogen industry chain.Among all kinds of hydrogen storage methods,light-weight solid-state hydrogen storage(LSHS)materials could become promising due to its intrinsic high hydrogen capacity.Hydrolysis reaction of LSHS materials occurs at moderate conditions,indicating the potential for portable applications.At present,most of review work focuses on the improvement of material performance,especially the catalysts design.This part is important,but the others,such as operation modes,are also vital to to make full use of material potential in the practical applications.Different operation modes of hydrolysis reaction have an impact on hydrogen capacity to various degrees.For example,hydrolysis in solution would decrease the hydrogen capacity of hydrogen generator to a low value due to the excessive water participating in the reaction.Therefore,application-oriented operation modes could become a key problem for hydrolysis reaction of LSHS materials.In this paper,the operation modes of hydrolysis reaction and their practical applications are mainly reviewed.The implements of each operation mode are discussed and compared in detail to determine the suitable one for practical applications with the requirement of high energy density.The current challenges and future directions are also discussed.展开更多
Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactiv...Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research.展开更多
With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels...With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.展开更多
Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of ...Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of hydrogen energy.Magnesium(Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity(7.6wt%),good performance,and low cost.However,the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome.In this paper,we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials,including carbons,metal-organic frameworks,and other materials.Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.展开更多
The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction...While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.展开更多
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for...Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models.展开更多
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w...Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.展开更多
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamic...Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.展开更多
Hydrogen can serve as a carrier to store renewable energy in large scale.However,hydrogen storage still remains a challenge in the current stage.It is difficult to meet the technical requirements applying the conventi...Hydrogen can serve as a carrier to store renewable energy in large scale.However,hydrogen storage still remains a challenge in the current stage.It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials.In the present work,a gaseous and solid-state(G-S)hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated.A Ti-Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt%was prepared for the G-S hybrid hydrogen storage system.The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H_(2)m^(-3) and stores hydrogen under pressure below5 MPa.It can readily release enough hydrogen at a temperature as low as-15C when the FC system is not fully activated and hot water is not available.The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%-95.9%when it is combined with an FC system.This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.展开更多
Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to...Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to alleviate the risk, as well as to reduce the cost incurred by globally-stored large amounts of depleted uranium left after uranium enrichment. Various uranium alloys have been examined in terms of hydrogen absorptiondesorption properties, among which UNi Al intermetallic compound showed promising characteristics, such as lower absorption-desorption temperatures and better anti-powdering strength. First principle calculation has been carried out on UNi Al hydride to predict the change of crystal structure and the lattice constant with increasing hydrogen content, which showed this calculation to be promising in predicting candidates for good hydrogen absorbers.展开更多
Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechan...Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechanisms,etc.Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries,which,however,have not been focused in batteries.Herein,two isomers are reported for batteries.As a result,the isomer tetrathiafulvalene(TTF)could store two monovalent anions reversibly,deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C.On the other hand,the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation,it would undergo an irreversible solid-state molecular rearrangement to TTF.The molecular rearrangement was confirmed by electrochemical performances,X-ray diffraction patterns,nuclear magnetic resonance spectra,and 1H detected heteronuclear multiple bond correlation spectra.These results suggested the small structural change could lead to a big difference in anion storage,and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.展开更多
Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-bas...Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material.展开更多
Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approache...Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti_(3)C_(2)T_(x) towards MgH_(2).More exposed edge facets of Ti_(3)C_(2)T_(x) displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH_(2) in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti_(3)C_(2)T_(x) MXene used for enhancing the catalytic activity in various fields.展开更多
The nitrogen doped graphene was synthesized by hydrothermal route utilizing 2-Chloroethylamine hydrochloride as nitrogen precursor in the presence of graphene oxide (GO). Nitrogen-doped graphene material is developed ...The nitrogen doped graphene was synthesized by hydrothermal route utilizing 2-Chloroethylamine hydrochloride as nitrogen precursor in the presence of graphene oxide (GO). Nitrogen-doped graphene material is developed for its application in hydrogen storage at room temperature. Nitrogen doped graphene layered material shows ~1.5 wt% hydrogen storage capacity achieved at room temperature and 90 bar pressure.展开更多
A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a s...A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a suitable route for the preparation of high volumes of graphene derivatives. P-substituted graphene material is developed for its application in hydrogen sorption in room temperature. Phosphorous doped graphene material with multi-layers of graphene shows a nearly ~2.2 wt% hydrogen sorption capacity at 298 K and 100 bar. This value is higher than that for reduced graphene oxide (RGO without phosphorous).展开更多
Nanomaterials have revolutionized the battery industry by enhancing energy storage capacities and charging speeds,and their application in hydrogen(H_(2))storage likewise holds strong potential,though with distinct ch...Nanomaterials have revolutionized the battery industry by enhancing energy storage capacities and charging speeds,and their application in hydrogen(H_(2))storage likewise holds strong potential,though with distinct challenges and mechanisms.H_(2) is a crucial future zero-carbon energy vector given its high gravimetric energy density,which far exceeds that of liquid hydrocarbons.However,its low volumetric energy density in gaseous form currently requires storage under high pressure or at low temperature.This review critically examines the current and prospective landscapes of solid-state H_(2) storage technologies,with a focus on pragmatic integration of advanced materials such as metal-organic frameworks(MOFs),magnesium-based hybrids,and novel sorbents into future energy networks.These materials,enhanced by nanotechnology,could significantly improve the efficiency and capacity of H_(2) storage systems by optimizing H_(2) adsorption at the nanoscale and improving the kinetics of H_(2) uptake and release.We discuss various H_(2) storage mechanisms—physisorption,chemisorption,and the Kubas interaction—analyzing their impact on the energy efficiency and scalability of storage solutions.The review also addresses the potential of“smart MOFs”,single-atom catalyst-doped metal hydrides,MXenes and entropy-driven alloys to enhance the performance and broaden the application range of H_(2) storage systems,stressing the need for innovative materials and system integration to satisfy future energy demands.High-throughput screening,combined with machine learning algorithms,is noted as a promising approach to identify patterns and predict the behavior of novel materials under various conditions,significantly reducing the time and cost associated with experimental trials.In closing,we discuss the increasing involvement of various companies in solid-state H_(2) storage,particularly in prototype vehicles,from a techno-economic perspective.This forward-looking perspective underscores the necessity for ongoing material innovation and system optimization to meet the stringent energy demands and ambitious sustainability targets increasingly in demand.展开更多
The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were inv...The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were investigated. The results reveal that the as-cast alloy consists of a main phase of CaCu5-type structure and a little second phase (Sn) with noticeable composition segregation and rather poor cycling stability (S200=40.1%). While the annealed and melt-spun alloys are of single CaCu5-type structure phase with a more homogeneous composition and lower cell volume expansion rate (?V/V) on hydriding, and a dramatically improved cyclic stability (S200=73.6%?76.2%), although their activation rate, initial capacity and high-rate dischargeability are lowered somewhat. It is found that the decrease in both the electrocatalytic activity and the hydrogen diffusion rate of the annealed and melt-spun alloys is the main cause for their relatively lower high-rate dischargeability, and the improved cycling stability is due to their lower volume expansion on hydriding and more uniform composition.展开更多
基金financially supported by the National Key R&D Program of China(2022YFE0101300)the National Natural Science Foundation of China(52176203 and 52050027)the China Education Association for International Exchange(202006)。
文摘Hydrogen storage and delivery technology is still a bottleneck in the hydrogen industry chain.Among all kinds of hydrogen storage methods,light-weight solid-state hydrogen storage(LSHS)materials could become promising due to its intrinsic high hydrogen capacity.Hydrolysis reaction of LSHS materials occurs at moderate conditions,indicating the potential for portable applications.At present,most of review work focuses on the improvement of material performance,especially the catalysts design.This part is important,but the others,such as operation modes,are also vital to to make full use of material potential in the practical applications.Different operation modes of hydrolysis reaction have an impact on hydrogen capacity to various degrees.For example,hydrolysis in solution would decrease the hydrogen capacity of hydrogen generator to a low value due to the excessive water participating in the reaction.Therefore,application-oriented operation modes could become a key problem for hydrolysis reaction of LSHS materials.In this paper,the operation modes of hydrolysis reaction and their practical applications are mainly reviewed.The implements of each operation mode are discussed and compared in detail to determine the suitable one for practical applications with the requirement of high energy density.The current challenges and future directions are also discussed.
基金supported by the National Key Research and Development Program of China(2022YFE03170002)the National Natural Science Foundation of China(52071286 and U2030208)the Scientific Research Fund of Zhejiang Provincial Education Department(Y202353551).
文摘Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research.
基金support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.
基金financially supported by the research programs of the National Natural Science Foundation of China (No. 52101274)the Natural Science Foundation of Shandong Province, China (No. ZR2020QE011)the Youth Top Talent Foundation of Yantai University, China (No. 2219008)
文摘Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of hydrogen energy.Magnesium(Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity(7.6wt%),good performance,and low cost.However,the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome.In this paper,we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials,including carbons,metal-organic frameworks,and other materials.Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
基金supported by The National Key Research and Development Program of China(2023YFB3809100)the National Natural Science Foundation of China(U23A200722)the Fundamental Research Funds for the Central Universities(2023CDJXY-016).
文摘While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
基金H.Shao acknowledges the Macao Science and Technol-ogy Development Fund(FDCT)for funding(project no.118/2016/A3 and 0062/2018/A2)and this work was also par-tially supported by a Start-Up Research Fund from the Uni-versity of Macao(SRG2016-00088-FST)+5 种基金Q.Li also thanks the financial support from the National Natural Science Foun-dation of China(51671118)Young Elite Scientists Sponsor-ship Program by CAST(2017QNRC001)the“Chenguang”Program from the Shanghai Municipal Education Commission(17CG42)Science and Technology Committee of Shanghai(16520721800)the Program for Professor of Special Ap-pointment(Eastern Scholar)by Shanghai Municipal Educa-tion Commission(No.TP2015040).。
文摘Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models.
文摘Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
基金supported by the Chongqing Special Key Project of Technology Innovation and Application Development,China(cstc2019jscx-dxwt B0029)the National Natural Science Foundation of China(51871143)+5 种基金the Science and Technology Committee of Shanghai(19010500400)the Shanghai Rising-Star Program(21QA1403200)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2019jcyj-msxm X0306)the Start-up Funds of Chongqing University(02110011044171)the Senior Talent Start-up Funds of Jiangsu University(4111310024)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2021M11)
文摘Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.
基金supported by State Grid Corporation of China(No.SGRIDGKJ[2016]123)Education Department of Guangxi Zhuang Autonomous Region(No.2019KY0021)the Natural Science Foundation of Guangxi Province(2019GXNSFBA185004,2018GXNSFAA281308,2019GXNSFAA245050)。
文摘Hydrogen can serve as a carrier to store renewable energy in large scale.However,hydrogen storage still remains a challenge in the current stage.It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials.In the present work,a gaseous and solid-state(G-S)hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated.A Ti-Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt%was prepared for the G-S hybrid hydrogen storage system.The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H_(2)m^(-3) and stores hydrogen under pressure below5 MPa.It can readily release enough hydrogen at a temperature as low as-15C when the FC system is not fully activated and hot water is not available.The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%-95.9%when it is combined with an FC system.This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.
基金Supported by Grants-in-Aid for Scientific Research(No.25420903)from the Ministry of Education,Culture,Sports,Science and Technology of Japan and Japan Industrial Location Center
文摘Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to alleviate the risk, as well as to reduce the cost incurred by globally-stored large amounts of depleted uranium left after uranium enrichment. Various uranium alloys have been examined in terms of hydrogen absorptiondesorption properties, among which UNi Al intermetallic compound showed promising characteristics, such as lower absorption-desorption temperatures and better anti-powdering strength. First principle calculation has been carried out on UNi Al hydride to predict the change of crystal structure and the lattice constant with increasing hydrogen content, which showed this calculation to be promising in predicting candidates for good hydrogen absorbers.
基金the National Natural Science Foundation of China(52173163 and 22205069)the National 1000-Talents Program,the Innovation Fund of WNLO,the China Postdoctoral Science Foundation(2021TQ0115 and 2021M701302)+1 种基金Hubei province Postdoctoral Innovation Research Post FundWenzhou Science and Technology Program(ZG2022020,G20220022 and G20220026).
文摘Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechanisms,etc.Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries,which,however,have not been focused in batteries.Herein,two isomers are reported for batteries.As a result,the isomer tetrathiafulvalene(TTF)could store two monovalent anions reversibly,deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C.On the other hand,the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation,it would undergo an irreversible solid-state molecular rearrangement to TTF.The molecular rearrangement was confirmed by electrochemical performances,X-ray diffraction patterns,nuclear magnetic resonance spectra,and 1H detected heteronuclear multiple bond correlation spectra.These results suggested the small structural change could lead to a big difference in anion storage,and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.
基金This work was supported by the National Natural Science Foundation of China(grant numbers 52071281 and 51971197)the Natural Science Foundation of Hebei Province(grant numbers E2019203161,E2019203414 and E2020203081)Science and Technology Major project of Inner Mongolia(2020ZD0012).
文摘Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material.
基金supported by the National Natural Science Foundation of China (51801100,51771092,21975125,51801099)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB430014)+1 种基金Six Talent Peaks Project in Jiangsu Province (2018,XNY-020)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti_(3)C_(2)T_(x) towards MgH_(2).More exposed edge facets of Ti_(3)C_(2)T_(x) displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH_(2) in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti_(3)C_(2)T_(x) MXene used for enhancing the catalytic activity in various fields.
文摘The nitrogen doped graphene was synthesized by hydrothermal route utilizing 2-Chloroethylamine hydrochloride as nitrogen precursor in the presence of graphene oxide (GO). Nitrogen-doped graphene material is developed for its application in hydrogen storage at room temperature. Nitrogen doped graphene layered material shows ~1.5 wt% hydrogen storage capacity achieved at room temperature and 90 bar pressure.
文摘A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a suitable route for the preparation of high volumes of graphene derivatives. P-substituted graphene material is developed for its application in hydrogen sorption in room temperature. Phosphorous doped graphene material with multi-layers of graphene shows a nearly ~2.2 wt% hydrogen sorption capacity at 298 K and 100 bar. This value is higher than that for reduced graphene oxide (RGO without phosphorous).
基金supported by the Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract(No.DE-AC02-05CH11231)funding provided by U.S.Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Officeperformed in part under the auspices of DOE by Lawrence Livermore National Laboratory under Contract(No.DE-AC52-07NA27344).
文摘Nanomaterials have revolutionized the battery industry by enhancing energy storage capacities and charging speeds,and their application in hydrogen(H_(2))storage likewise holds strong potential,though with distinct challenges and mechanisms.H_(2) is a crucial future zero-carbon energy vector given its high gravimetric energy density,which far exceeds that of liquid hydrocarbons.However,its low volumetric energy density in gaseous form currently requires storage under high pressure or at low temperature.This review critically examines the current and prospective landscapes of solid-state H_(2) storage technologies,with a focus on pragmatic integration of advanced materials such as metal-organic frameworks(MOFs),magnesium-based hybrids,and novel sorbents into future energy networks.These materials,enhanced by nanotechnology,could significantly improve the efficiency and capacity of H_(2) storage systems by optimizing H_(2) adsorption at the nanoscale and improving the kinetics of H_(2) uptake and release.We discuss various H_(2) storage mechanisms—physisorption,chemisorption,and the Kubas interaction—analyzing their impact on the energy efficiency and scalability of storage solutions.The review also addresses the potential of“smart MOFs”,single-atom catalyst-doped metal hydrides,MXenes and entropy-driven alloys to enhance the performance and broaden the application range of H_(2) storage systems,stressing the need for innovative materials and system integration to satisfy future energy demands.High-throughput screening,combined with machine learning algorithms,is noted as a promising approach to identify patterns and predict the behavior of novel materials under various conditions,significantly reducing the time and cost associated with experimental trials.In closing,we discuss the increasing involvement of various companies in solid-state H_(2) storage,particularly in prototype vehicles,from a techno-economic perspective.This forward-looking perspective underscores the necessity for ongoing material innovation and system optimization to meet the stringent energy demands and ambitious sustainability targets increasingly in demand.
基金Project(50131040) supported by the National Natural Science Foundation of China
文摘The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were investigated. The results reveal that the as-cast alloy consists of a main phase of CaCu5-type structure and a little second phase (Sn) with noticeable composition segregation and rather poor cycling stability (S200=40.1%). While the annealed and melt-spun alloys are of single CaCu5-type structure phase with a more homogeneous composition and lower cell volume expansion rate (?V/V) on hydriding, and a dramatically improved cyclic stability (S200=73.6%?76.2%), although their activation rate, initial capacity and high-rate dischargeability are lowered somewhat. It is found that the decrease in both the electrocatalytic activity and the hydrogen diffusion rate of the annealed and melt-spun alloys is the main cause for their relatively lower high-rate dischargeability, and the improved cycling stability is due to their lower volume expansion on hydriding and more uniform composition.