期刊文献+
共找到53,030篇文章
< 1 2 250 >
每页显示 20 50 100
–C≡N functionalizing polycarbonate-based solid-state polymer electrolyte compatible to high-voltage cathodes
1
作者 Shuo Ma Yanan Zhang +5 位作者 Donghui Zhang Yating Zhang Wenbin Li Kemeng Ji Zhongli Tang Mingming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期422-431,共10页
Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves t... Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves the rational design of solid-state-C≡N functionalized P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs and its synthesis by in-situ free radical polymerization of vinyl ethylene carbonate(VEC) and 2-cyanoethyl acrylate(CEA).In situ polymerization yields electrode/electrolyte interfaces with low interfacial resistance,forming a stable SEI layer enriched with LiF,Li_(3)N,and RCOOLi,ensuring stable Li plating/stripping for over 1400 h.The-C≡N moiety renders the αH on the adjacent αC positively charged,thereby endowing it with the capability to anchor TFSI^(-).Simultaneously,the incorporation of-C≡N moiety diminishes the electron-donating ability of the C=O,C-O-C,and-C≡N functional groups,facilitating not only the ion conductivity enhancement but also a more rapid Li^(+)migration proved by DFT theoretical calculations and Raman spectroscopy.At room temperature,t_(Li+) of 0.60 for P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs is achieved when the ionic conductivity σ_(Li+)is 2.63×10^(-4) S cm^(-1) and the electrochemical window is expanded to5.0 V.Both coin cells with high-areal-loading cathodes and the 6.5-mAh pouch cell,exhibit stable charge/discharge cycling.At 25℃,the 4.45-V Li|P(VEC_1-CEA_(0.3))/LiTFSI@CE|LiCoO_(2) battery performs stable cycling over 200 cycles at 0.2 C,with a capacity retention of 82.1%. 展开更多
关键词 Lithium-metal batteries HIGH-VOLTAGE solid-state polymer electrolytes –C≡N In situ polymerization
下载PDF
Synergetic Control of Li^(+)Transport Ability and Solid Electrolyte Interphase by Boron-Rich Hexagonal Skeleton Structured All-Solid-State Polymer Electrolyte
2
作者 Yanan Li Shunchao Ma +7 位作者 Yuehua Zhao Silin Chen Tingting Xiao Hongxing Yin Huiyu Song Xiumei Pan Lina Cong Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom... High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically. 展开更多
关键词 all-solid-state electrolyte boron-rich polymer lithium metal batteries lithium-ion transference number solid electrolyte interphase layer
下载PDF
3D spiny AlF_(3)/Mullite heterostructure nanofiber as solid-state polymer electrolyte fillers with enhanced ionic conductivity and improved interfacial compatibility
3
作者 Weicui Liu Lingshuai Meng +7 位作者 Xueqiang Liu Lu Gao Xiaoxiao Wang Junbao Kang Jingge Ju Nanping Deng Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期503-515,I0013,共14页
Lithium metal batteries assembled with solid-state electrolyte can offer high safety and volumetric energy density compared to liquid electrolyte.The polymer solid-state electrolytes of poly(ethylene oxide)(PEO)are wi... Lithium metal batteries assembled with solid-state electrolyte can offer high safety and volumetric energy density compared to liquid electrolyte.The polymer solid-state electrolytes of poly(ethylene oxide)(PEO)are widely used in lithium metal solid-state batteries due to their unique properties.However,there are still some defects such as low ionic conductivity at room temperature and weak inhibition of lithium dendrite growth.Herein,the spiny inorganic nanofibers heterostructure with mullite whiskers grown on the surface of aluminum fluoride(AlF_(3))nanofibers are introduced into the PEOLi TFSI electrolytes for the first time to prepare composite solid-state electrolytes.The AlF_(3)as a strong Lewis acid can adsorb anions and promote the dissociation of Li salts.Besides,the specially threedimensional(3D)structure enlarges the effective contacting interface with the PEO polymer,which allows the lithium ions to be transported not only along the large aspect ratio of AlF3nanofibers,but also along the mullite phase in the transmembrane direction rapidly.Thereby,the transport channel of lithium ions at the spiny inorganic nanofibers-polymer interface is further improved.Benefiting from these advantages,the obtained composite solid-state electrolyte has a high ionic conductivity of 1.58×10^(-4)S cm^(-1)at 30℃and the lithium ions transfer number of 0.53.In addition,the AlF3has strong binding energy with anions,low electronic conductivity and wide electrochemical stability window,and reduced nucleation overpotential of lithium during cycling,which is positive for lithium dendrite suppression in solid-state electrolytes.Thus,the assembled symmetric Li/Li symmetric batteries exhibit stable cycling performance at different area capacities of 0.15,0.2,0.3 and 0.4 m A h cm^(-2).More importantly,the LiFePO_(4)(LFP)/Li battery still has 113.5 m A h g-1remaining after 400 cycles at 50℃and the Coulomb efficiency is nearly 100%during the long cycle.Overall,the interconnected structure of 3D spiny inorganic heterostructure nanofiber constitutes fast and uninterrupted lithium ions transport channels,maximizing the synergistic effect of interfacial transport of inorganic fillers and reducing PEO crystallinity,thus providing a novel approach to high performance solid-state electrolytes. 展开更多
关键词 3D spiny inorganic nanofibers HETEROSTRUCTURES Composite solid-state electrolytes Ionic conductivity
下载PDF
Semi-interpenetrating-network all-solid-state polymer electrolyte with liquid crystal constructing efficient ion transport channels for flexible solid lithium-metal batteries 被引量:1
4
作者 Qinghui Zeng Yu Lu +9 位作者 Pingping Chen Zhenfeng Li Xin Wen Wen Wen Yu Liu Shuping Zhang Hailei Zhao Henghui Zhou Zhi-xiang Wang Liaoyun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期157-167,共11页
The development of the solid-state polymer electrolytes (SPEs) for Li-ion batteries (LIBs) can effectively address the hidden safety issues of commercially used liquid electrolytes.Nevertheless,the unsatisfactory room... The development of the solid-state polymer electrolytes (SPEs) for Li-ion batteries (LIBs) can effectively address the hidden safety issues of commercially used liquid electrolytes.Nevertheless,the unsatisfactory room temperature ion conductivity and inferior mechanical strength for linear PEO-based SPEs are still the immense obstacles impeding the further applications of SPEs for large-scale commercialization.Herein,we fabricate a series of semi-interpenetrating-network (semi-IPN) polymer electrolytes based on a novel liquid crystal (C6M LC) and poly(ethylene glycol) diglycidyl ether (PEGDE) via UV-irradiation at the first time.The LCs not only highly improve the mechanical properties of electrolyte membranes via the construction of network structure with PEGDE,but also create stable ion transport channels for ion conduction.As a result,a free-standing flexible SPE shows outstanding ionic conductivity(5.93×10^(-5) S cm^(-1) at 30℃),a very wide electrochemical stability window of 5.5 V,and excellent thermal stability at thermal decomposition temperatures above 360℃ as well as the capacity of suppressing lithium dendrite growth.Moreover,the LiFePO_(4)/Li battery assembled with the semi-IPN electrolyte membranes exhibits good cycle performance and admirable reversible specific capacity.This work highlights the obvious advantages of LCs applied to the electrolyte for the advanced solid lithium battery. 展开更多
关键词 solid-state polymer electrolyte Liquid crystal Semi-interpenetrating-network Ion transport channels Lithium battery
下载PDF
High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery 被引量:5
5
作者 Lu Gao Jianxin Li +3 位作者 Jingge Ju Bowen Cheng Weimin Kang Nanping Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期644-654,共11页
The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility gre... The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries. 展开更多
关键词 Hierarchical structure PA6 electrospun nanofiber membrane All-solid-state composite polymer electrolyte Lithium metal battery
下载PDF
Quasi-solid-state polymer plastic crystal electrolyte for subzero lithium-ion batteries 被引量:2
6
作者 Yumei Zhou Fengrui Zhang +6 位作者 Peixin He Yuhong Zhang Yiyang Sun Jingjing Xu Jianchen Hu Haiyang Zhang Xiaodong Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期87-93,I0003,共8页
Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,ex... Succinonitrile(SN)-based polymer plastic crystal electrolytes(PPCEs)have attracted considerable attention as solid-state electrolytes owing to their high ionic conductivities similar to those of liquid electrolytes,excellent contacts with the electrodes,and good mechanic properties.As a crucial property of a solid-state electrolyte,the ionic conductivity of the PPCE directly depends on the interactions between the constituent parts including the polymer,lithium salt,and SN.A few studies have focused on the effects of polymer–lithium–salt and polymer–SN interactions on the PPCE ionic conductivity.Nevertheless,the impact of the lithium–salt–SN combination on the PPCE ionic conductivity has not been analyzed.In particular,tuning of the lithium-salt–SN interaction to fabricate a subzero PPCE with a high low-temperature ionic conductivity has not been reported.In this study,we design and fabricate five PPCE membranes with different weight ratios of Li N(SO2 CF3)2(Li TFSI)and SN to investigate the effect of the Li TFSI–SN interaction on the PPCE ionic conductivity.The ionic conductivities of the five PPCEs are investigated in the temperature range of–20 to 60°C by electro-chemical impedance spectroscopy.The interaction is analyzed by Fourier-transform infrared spectroscopy,Raman spectroscopy,and differential scanning calorimetry.The Li TFSI–SN interaction significantly influences the melting point of the PPCE,dissociation of the Li TFSI salt,and thus the PPCE ionic conductivity.By tuning the Li TFSI–SN interaction,a subzero workable PPCE membrane having an excellent low-temperature ionic conductivity(6×10-4 S cm–1 at 0°C)is obtained.The electro-chemical performance of the optimal PPCE is evaluated by using a Li Co O2/PPCE/Li4 Ti5 O12 cell,which confirms the application feasibility of the proposed quasisolid-state electrolyte in subzero workable lithium-ion batteries. 展开更多
关键词 SUCCINONITRILE polymer plastic crystal electrolyte Ionic conductivity Lithium-salt–succinonitrile interaction Subzero lithium-ion battery
下载PDF
Preparation of poly(amino-quinone) by microwave-assisted solid-state polymerization
7
作者 李海普 万俊杰 +1 位作者 王帅 常庆伟 《Journal of Central South University》 SCIE EI CAS 2010年第3期467-471,共5页
Microwave irradiation was employed to assist the synthesis of poly(amino-quinone) (PAQ) from p-benzoquinone and diamines in solid state. The effects of power, time, and pattern (continuously or intermittently) o... Microwave irradiation was employed to assist the synthesis of poly(amino-quinone) (PAQ) from p-benzoquinone and diamines in solid state. The effects of power, time, and pattern (continuously or intermittently) of microwave irradiation on yield and intrinsic viscosity of PAQs were studied. It is shown that the continuous microwave irradiation at a high power leads to rapid increase of yield and a sudden halt in polymerization afterwards, due to the subsequent loss of volatile reactants at a high reaction temperature. Alternatively, the high-power microwave irradiation is applicable to raising the yield if used intermittently. In contras4 the low-power microwave irradiation favours the way of continuous exposure to ensure sufficient heat for polymerization. In both cases of high and low power, the yield and intrinsic viscosity can be further promoted by prolonging the exposure time. It is found that under a preliminarily optimized condition of intermittent irradiation at 490 W with six sequences of 5 min irradiation followed by 5 rain interval, the yield and intrinsic viscosity of PAQ from p-benzoquinone and p-phenylene diamine can reach as high as 83% and 41.9 mL/g, respectively. 展开更多
关键词 poly(amino-quinone) MICROWAVE solid-state reaction
下载PDF
Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries
8
作者 Qianqian Song Yunting Zhang +3 位作者 Jianli Liang Si Liu Jian Zhu Xingbin Yan 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期216-221,共6页
Polyethylene oxide(PEO)-based solid-state polymer electrolytes(SPEs)are limited by their poor cyclic stability and inferior ionic conductivity for applicating in high-safety,long-cycling and high-energy-density lithiu... Polyethylene oxide(PEO)-based solid-state polymer electrolytes(SPEs)are limited by their poor cyclic stability and inferior ionic conductivity for applicating in high-safety,long-cycling and high-energy-density lithium metal batteries.Herein,porous boron nitride nanofibers(BNNFs)are filled into PEO-based SPE,which significantly suppresses Li dendrites growth and enhances the electrochemical performance of Li metal battery.BNNFs with high porosity have more active sites to connect with PEO,which can effectively reduce the crystallinity of the PEO matrix and enhance its ionic conductivity.Moreover,owing to the hardness and good stability of BNNFs,BNNFs/PEO/Li TFSI electrolyte exhibits a wider electrochemical window,better mechanical property and higher thermal stability compared with PEO/Li TFSI electrolyte.Consequently,the Li symmetric cell composed of 1%BNNFs/PEO/Li TFSI performs good cyclic stability(>1800 h),and the Li||1%BNNFs/PEO/Li TFSI||LFP full battery shows obviously improved performances in charge-discharge polarization voltage,discharge specific capacity,rate performance and cyclic stability than the Li||PEO/Li TFSI||LFP battery. 展开更多
关键词 solid-state polymer electrolyte Boron nitride nanofibers Lithium metal battery Ionic conductivity Li dendrite
原文传递
Understand the Temperature Sensing Behavior of Solid-state Polymerized PEDOT Hybrid Based on X-ray Scattering Studies
9
作者 Zhen-Hang He Guang-Feng Liu +3 位作者 Ze-Kun Zhou Zhen Liu Yi-Shu Zeng Peng Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第1期105-112,I0010,共9页
Poly(3,4-ethylenedioxythiophene)(PEDOT) is one of the most successful conductive polymers that recently has been used in wearable sensors for human health monitoring. In this work, we prepared a series of PEDOT hybrid... Poly(3,4-ethylenedioxythiophene)(PEDOT) is one of the most successful conductive polymers that recently has been used in wearable sensors for human health monitoring. In this work, we prepared a series of PEDOT hybrids consisting of PEDOT, sodium poly(styrene sulfonate)(PSSNa) and polyethylene oxide(PEO), and their preparation could be scaled-up via an adapted solid-state polymerization process. The resistance of the as-prepared PEDOT:PSS/PEO hybrid shows clear temperature response, i.e., it decreases almost linearly with the temperature increase. To understand this phenomenon, the in situ synchrotron radiation wide-and small-angle X-ray scattering(WAXS/SAXS) characterizations were undertaken to study the temperature-dependent microstructure change of the PEDOT:PSS/PEO hybrid. It demonstrated that PEDOT formed conductive paths in the hybrids, which were not destroyed by the PEO crystallization. As temperature increased, the PEO crystals' melting and the accompanying reorganization of PEDOT chains endowed the hybrid sample temperature responsiveness. Based on these fundamental knowledges, the hybrid materials were used to fabricate flexible wearable sensor that showing temperature sensing performance with an accuracy of 1 ℃. These findings shed lights on the scalable manufacturing of wearable sensors for body temperature monitoring. 展开更多
关键词 solid-state polymerization PEDOT hybrid Structure-property correlation X-ray scattering
原文传递
Thin polymer electrolyte with MXene functional layer for uniform Li^(+) deposition in all-solid-state lithium battery 被引量:1
10
作者 Weijie Kou Yafang Zhang +3 位作者 Wenjia Wu Zibiao Guo Quanxian Hua Jingtao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期71-80,共10页
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ... Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery. 展开更多
关键词 MXene nanosheet Laminar functional layer Thin polymer electrolyte Dendrite-free Liþdeposition All-solid-state lithium battery
下载PDF
Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life
11
作者 Juhyoung Kim Woonghee Choi +1 位作者 Seong-Ju Hwang Dong Wook Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期4-12,共9页
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani... Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode. 展开更多
关键词 composite cathode electrochemical stability ionic conductive polymer solid-state battery sulfide solid electrolyte
下载PDF
Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery
12
作者 Xue Ye Jianneng Liang +6 位作者 Baorong Du Yongliang Li Xiangzhong Ren Dazhuan Wu Xiaoping Ouyang Qianling Zhang Jianhong Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期50-59,共10页
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat... This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. 展开更多
关键词 in situ polymerization lithium anode polymer electrolyte solid-state lithium batteries
下载PDF
A three-dimensional co-continuous network structure polymer electrolyte with efficient ion transport channels enabling ultralong-life all solid-state lithium metal batteries
13
作者 Meng Wang Hu Zhang +2 位作者 Yewen Li Ruiping Liu Huai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期635-645,共11页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries. 展开更多
关键词 solid-state electrolyte Lithium-metal batteries Liquid crystalline polymer COpolymer 3D co-continuous structure Long cycle stability
下载PDF
A gel polymer electrolyte based on IL@NH_(2)-MIL-53(Al)for high-performance all-solid-state lithium metal batteries
14
作者 Sijia Wang Ye Liu +5 位作者 Liang He Yu Sun Qing Huang Shoudong Xu Xiangyun Qiu Tao Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期47-55,共9页
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co... Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries. 展开更多
关键词 Metal-organic frameworks(MOFs) All solid-state lithium batteries(ASSLBs) Ionic liquid NH_(2)-MIL-53(Al) solid-state electrolytes(SSEs)
下载PDF
Revealing the specific role of sulfide and nano-alumina in composite solid-state electrolytes for performance-reinforced ether-nitrile copolymers
15
作者 Haoyang Yuan Changhao Tian +3 位作者 Mengyuan Song Wenjun Lin Tao Huang Aishui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期628-636,共9页
Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combin... Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design. 展开更多
关键词 Composite solid-state electrolytes Lithium metal anode Dual fillers Interfacial ionic conduction Inert nano-alumina
下载PDF
A gel polymer electrolyte with IL@UiO-66-NH_(2) as fillers for high-performance all-solid-state lithium metal batteries 被引量:4
16
作者 Tao Wei Qi Zhang +7 位作者 Sijia Wang Mengting Wang Ye Liu Cheng Sun Yanyan Zhou Qing Huang Xiangyun Qiu Fang Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1897-1905,共9页
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ... All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries. 展开更多
关键词 all solid-state lithium-ion batteries metal-organic frameworks gel polymer electrolytes ionic liquid solid electrolyte interphase
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
17
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries 被引量:2
18
作者 Kyeong‑Seok Oh Ji Eun Lee +7 位作者 Yong‑Hyeok Lee Yi‑Su Jeong Imanuel Kristanto Hong‑Seok Min Sang‑Mo Kim Young Jun Hong Sang Kyu Kwak Sang‑Young Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期416-432,共17页
Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address th... Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs.A model CSE is composed of argyrodite-type Li_6PS_5Cl(LPSCl)and gel polymer electrolyte(GPE,including Li~+-glyme complex as an ion-conducting medium).The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase.Additionally,manipulating the solvation/desolvation behavior of the Li~+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface.The resulting scalable CSE(area=8×6(cm×cm),thickness~40μm)can be assembled with a high-mass-loading LiNi_(0.7)Co_(0.15)Mn_(0.15)O_(2)cathode(areal-mass-loading=39 mg cm~(-2))and a graphite anode(negative(N)/positive(P)capacity ratio=1.1)in order to fabricate an SSB full cell with bi-cell configuration.Under this constrained cell condition,the SSB full cell exhibits high volumetric energy density(480 Wh L_(cell)~(-1))and stable cyclability at 25℃,far exceeding the values reported by previous CSE-based SSBs. 展开更多
关键词 solid-state batteries Composite solid-state electrolytes Ion transport phenomena Bi-percolating ion channels Interfacial resistance
下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:12
19
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 polymer Inorganic composite electrolytes All-solid-state lithium metal batteries FILLERS Ionic conductivity High voltage
下载PDF
Solid polymer electrolytes in all-solid-state lithium metal batteries:From microstructures to properties 被引量:2
20
作者 Zongxi Lin Ouwei Sheng +7 位作者 Xiaohan Cai Dan Duan Ke Yue Jianwei Nai Yao Wang Tiefeng Liu Xinyong Tao Yujing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期358-378,I0009,共22页
All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic con... All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic conductivity and poor interfacial stability are two key factors affecting the practical application of ASSLMBs,and our understanding of the mechanisms behind these key problems from microscopic perspective is still limited.In this review,the mechanisms and advanced characterization techniques of ASSLMBs are summarized to correlate the microstructures and properties.Firstly,we summarize the challenges faced by solid polymer electrolytes(SPEs)in ASSLMBs,such as the low roomtemperature ionic conductivity and the poor interfacial stability.Secondly,several typical improvement methods of polymer ASSLMBs are discussed,including composite SPEs,ultra-thin SPEs,SPEs surface modification and Li anode surface modification.Finally,we conclude the characterizations for correlating the microstructures and the properties of SPEs,with emphasis on the use of emerging advanced techniques(e.g.,cryo-transmission electron microscopy)for in-depth analyzing ASSLMBs.The influence of the microstructures on the properties is very important.Until now,it has been difficult for us to understand the microstructures of batteries.However,some recent studies have demonstrated that we have a better understanding of the microstructures of batteries.Then we suggest that in situ characterization,nondestructive characterization and sub-angstrom resolution are the key technologies to help us further understand the batteries'microstructures and promote the development of batteries.And potential investigations to understand the microstructures evolution and the batteries behaviors are also prospected to expect further reasonable theoretical guidance for the design of ASSLMBs with ideal performance. 展开更多
关键词 Lithium metal batteries Solid polymer electrolytes MICROSTRUCTURES PROPERTIES
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部