期刊文献+
共找到1,110篇文章
< 1 2 56 >
每页显示 20 50 100
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:3
1
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 solid-state lithium metal batteries Composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization 被引量:2
2
作者 Birhanu Bayissa Gicha Lemma Teshome Tufa +2 位作者 Njemuwa Nwaji Xiaojun Hu Jaebeom Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期209-246,共38页
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ... Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs. 展开更多
关键词 All-solid-state lithium-sulfur batteries COMMERCIALIZATION Enhancement strategies solid-state electrolytes Sulfurbased cathodes
下载PDF
How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries? 被引量:2
3
作者 Junwu Sang Bin Tang +3 位作者 Yong Qiu Yongzheng Fang Kecheng Pan Zhen Zhou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期93-98,共6页
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si... All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance. 展开更多
关键词 critical current density solid electrolyte solid-state lithium metal batteries stacking pressure
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries 被引量:1
4
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 Atom substitution solid-state electrolyte Machine learning Stabilized interface
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
5
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries 被引量:1
6
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 solid-state electrolyte(SSE) All-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
下载PDF
Design strategies and recent advancements of solid-state supercapacitor operating in wide temperature range
7
作者 Jie Zhou Zhengfeng Zhu +4 位作者 Wenhui Shi Xiangyu Shi Zhuoyuan Zheng Ye Xiong Yusong Zhu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期248-281,共34页
Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues... Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions. 展开更多
关键词 ELECTRODE INTERFACE solid-state electrolyte solid-state supercapacitor wide temperature
下载PDF
SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries
8
作者 Qianwen Yin Tianyu Li +3 位作者 Hongzhang Zhang Guiming Zhong Xiaofei Yang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期145-152,共8页
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ... Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs. 展开更多
关键词 solid-state lithium batteries solid-state NMR Anode-free SEI Dead Li
下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries
9
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 solid-state lithium–sulfur batteries solid-state electrolytes Electrode/electrolyte interface Interfacial engineering Enhancing interfacial contact
下载PDF
Interface-reinforced solid-state electrochromic Li-ion batteries enabled by in-situ liquid-solid transitional plastic glues
10
作者 Ruidong Shi Kaiyue Liu +3 位作者 Mingxue Zuo Mengyang Jia Zhijie Bi Xiangxin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期96-104,共9页
The electrochromic Li-ion batteries(ELIBs) combine the functions of electrochromism and energy storage,realizing the display of energy-storage levels by visual signals. However, the accompanying interfacial issues inc... The electrochromic Li-ion batteries(ELIBs) combine the functions of electrochromism and energy storage,realizing the display of energy-storage levels by visual signals. However, the accompanying interfacial issues including physical contact and(electro)chemical stability should be taken into account when the conventional liquid/gel electrolytes are replaced with solid-state counterparts. Herein, the in-situ liquid-solid transitional succinonitrile(SCN) plastic glues are constructed between electrodes and poly(ethylene oxide)(PEO) polymer electrolytes, enabling an interface-reinforced solid-state ELIB.Specifically, the liquid SCN precursor can adequately wet electrode/PEO interfaces at high temperature,while it returns back to solid state at room temperature, leading to seamless interfacial contact and smooth ionic transfer without changing the solid state of the device. Moreover, the SCN interlayer suppresses the direct contact of PEO with electrodes containing high-valence metal ions, evoking the improved interfacial stability by inhibiting the oxidation of PEO. Therefore, the resultant solid-state ELIB with configuration of LiMn_(2)O_(4)/SCN-PEO-SCN/WO_(3) delivers an initial discharge capacity of 111 m A h g^(-1) along with a capacity retention of 88.3% after 200 cycles at 30 ℃. Meanwhile, the electrochromic function is integrated into the device by distinguishing its energy-storage levels through distinct color changes. This work proposes a promising solid-state ELIB with greatly reinforced interfacial compatibility by introducing in-situ solidified plastic glues. 展开更多
关键词 Electrochromic Li-ion batteries Interfacial issues solid-state electrolytes Visualization
下载PDF
Lithiophilic Li-Si alloy-solid electrolyte interface enabled by high-concentration dual salt-reinforced quasi-solid-state electrolyte
11
作者 Yuanxing Zhang Ling Zhang +7 位作者 Zhiguang Zhao Yuxiang Zhang Jingwen Cui Chengcai Liu Daobin Mu Yuefeng Su Borong Wu Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期216-230,I0005,共16页
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ... Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles. 展开更多
关键词 Prelithiation Li-Si alloy anode solid-state electrolyte SEI layer
下载PDF
A gel polymer electrolyte based on IL@NH_(2)-MIL-53(Al)for high-performance all-solid-state lithium metal batteries
12
作者 Sijia Wang Ye Liu +5 位作者 Liang He Yu Sun Qing Huang Shoudong Xu Xiangyun Qiu Tao Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期47-55,共9页
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co... Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries. 展开更多
关键词 Metal-organic frameworks(MOFs) All solid-state lithium batteries(ASSLBs) Ionic liquid NH_(2)-MIL-53(Al) solid-state electrolytes(SSEs)
下载PDF
Structural analysis of silk using solid-state NMR
13
作者 Tetsuo Asakura 《Magnetic Resonance Letters》 2024年第3期19-34,共16页
Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric press... Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR. 展开更多
关键词 SILK Bombyx mori SPIDER solid-state NMR STRUCTURE
下载PDF
Li-Ion Transport Mechanisms in Selenide-Based Solid-State Electrolytes in Lithium-Metal Batteries:A Study of Li_(8)SeN_(2),Li_(7)PSe_(6),and Li_(6)PSe_(5)X(X=Cl,Br,I)
14
作者 Wenshan Xiao Mingwei Wu +2 位作者 Huan Wang Yan Zhao Qiu He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期37-47,共11页
To achieve high-energy-density and safe lithium-metal batteries(LMBs),solid-state electrolytes(SSEs)that exhibit fast Li-ion conductivity and good stability against lithium metal are of great importance.This study pre... To achieve high-energy-density and safe lithium-metal batteries(LMBs),solid-state electrolytes(SSEs)that exhibit fast Li-ion conductivity and good stability against lithium metal are of great importance.This study presents a systematic exploration of selenide-based materials as potential SSE candidates.Initially,Li_(8)SeN_(2)and Li_(7)PSe_(6)were selected from 25 ternary selenides based on their ability to form stable interfaces with lithium metal.Subsequently,their favorable electronic insulation and mechanical properties were verified.Furthermore,extensive theoretical investigations were conducted to elucidate the fundamental mechanisms underlying Li-ion migration in Li_(8)SeN_(2),Li_(7)PSe_(6),and derived Li_(6)PSe_(5)X(X=Cl,Br,I).Notably,the highly favorable Li-ion conduction mechanism of vacancy diffusion was identified in Li6PSe5Cl and Li_(7)PSe_(6),which exhibited remarkably low activation energies of 0.21 and 0.23 eV,and conductivity values of 3.85×10^(-2)and 2.47×10^(-2)S cm^(-1)at 300 K,respectively.In contrast,Li-ion migration in Li_(8)SeN_(2)was found to occur via a substitution mechanism with a significant diffusion energy barrier,resulting in a high activation energy and low Li-ion conductivity of 0.54 eV and 3.6×10^(-6)S cm^(-1),respectively.Throughout this study,it was found that the ab initio molecular dynamics and nudged elastic band methods are complementary in revealing the Li-ion conduction mechanisms.Utilizing both methods proved to be efficient,as relying on only one of them would be insufficient.The discoveries made and methodology presented in this work lay a solid foundation and provide valuable insights for future research on SSEs for LMBs. 展开更多
关键词 Li-ion transport lithium argyrodites lithium-metal battery SELENIDES solid-state electrolytes
下载PDF
Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer
15
作者 Leqi Zhao Yijun Zhong +2 位作者 Chencheng Cao Tony Tang Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期59-73,共15页
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder... The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern. 展开更多
关键词 solid-state battery Cathode electrolyte interlayer Flame-retardant additive Cycling stability Interfacial stability
下载PDF
Unveiling structural and dynamical features of chromatin using NMR spectroscopy This article is part of the virtual special issue“Solid-state NMR studies on polymers and biological solids”
16
作者 Xiangyan Shi 《Magnetic Resonance Letters》 2024年第4期62-70,共9页
Eukaryotic deoxyribonucleic acid(DNA)is wrapped around histone octamers(HOs)to form nucleosome core particles(NCPs),which in turn interact with linker DNA and linker histones to assemble chromatin fibers with more com... Eukaryotic deoxyribonucleic acid(DNA)is wrapped around histone octamers(HOs)to form nucleosome core particles(NCPs),which in turn interact with linker DNA and linker histones to assemble chromatin fibers with more complex,high-order structures.The molecular properties of chromatin are dynamically regulated by several factors,such as post-translational modifications and effector proteins,to maintain genome stability.In the past two decades,high-resolution techniques have led to many breakthroughs in understanding the molecular mechanisms that govern chromatin regulation.Nuclear magnetic resonance(NMR)has emerged as one of the major techniques in this field,providing new insights into the nucleosomes and nucleosome-protein complexes in different states ranging from soluble form to condensed states.Solution-state NMR has proven valuable in elucidating the conformational dynamics and molecular interactions for histone N-terminal tails,histone core regions and DNA with the combination of specific isotopic labeling.Solid-state NMR,which is not constrained by the high molecular weights of complexes like nucleosomes,has been applied to capture the structural and dynamical characteristics of both flexible tails and rigid histone core regions in nucleosomes and their complexes with effector proteins.Furthermore,the combination of the two techniques allows tracking molecular properties of nucleosomes during phase separation processes,which potentially play essential roles in chromatin regulation.This review summarizes recent advances in NMR studies of chromatin structure and dynamics.It highlighted that NMR revealed unique molecular characteristics for nucleosomes that are often invisible experimentally by other techniques like cryogenic electron microscopy(cryo-EM)and X-ray diffraction(XRD).I envision that,with future ef-forts such as the development of NMR methods and optimization of sample production protocols,solution-state NMR and solid-state NMR will provide invaluable information to expand our understanding of chromatin activity and its regulatory processes. 展开更多
关键词 CHROMATIN Structure Dynamics Phase separation Solution-state NMR solid-state NMR
下载PDF
Recent advances in solving Li_(2)CO_(3) problems in garnet-based solid-state battery: A systematic review(2020-2023)
17
作者 Shaoxiong Han Ziqi Wang +3 位作者 Yue Ma Yanlan Zhang Yongzhen Wang Xiaomin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期58-76,I0004,共20页
Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion ba... Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion batteries.There are two sources of Li_(2)CO_(3) contamination.The main one is the aging of garnet electrolytes in the atmosphere.Garnet electrolytes can react with H_(2)O and CO_(2) in the air to form Li_(2)CO_(3),which reduces ion conductivity,increases electrode/garnet electrolyte interface resistance,and deteriorates the electrochemical performance of the battery.Various strategies,such as elemental doping,grain boundary manipulation,and interface engineering,have been suggested to address these issues.The other is the passivation layer(Li_(2)CO_(3),Li_3N,LiOH,Li_(2)O) formed on the surface of the lithium foil after long-term storage,which is ignored by most researchers.To better understand the current strategies and future trends to address the Li_(2)CO_(3) problem,this perspective provides a systematic review of journals published in this field from 2020-2023. 展开更多
关键词 solid-state batteries Garnet electrolytes Air stability Interface engineering Lithium foil contamination
下载PDF
Interface Engineering on Constructing Physical and Chemical Stable Solid-State Electrolyte Toward Practical Lithium Batteries
18
作者 Honggang He Litong Wang +9 位作者 Malek Al-Abbasi Chunyan Cao Heng Li Zhu Xu Shi Chen Wei Zhang Ruiqing Li Yuekun Lai Yuxin Tang Mingzheng Ge 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期28-47,共20页
Solid-state lithium batteries(SSLBs)with high safety have emerged to meet the increasing energy density demands of electric vehicles,hybrid electric vehicles,and portable electronic devices.However,the dendrite format... Solid-state lithium batteries(SSLBs)with high safety have emerged to meet the increasing energy density demands of electric vehicles,hybrid electric vehicles,and portable electronic devices.However,the dendrite formation,high interfacial resistance,and deleterious interfacial reactions caused by solid-solid contact between electrode and electrolyte have hindered the commercialization of SSLBs.Thus,in this review,the state-of-the-art developments in the rational design of solid-state electrolyte and their progression toward practical applications are reviewed.First,the origin of interface instability and the sluggish charge carrier transportation in solid-solid interface are presented.Second,various strategies toward stabilizing interfacial stability(reducing interfacial resistance,suppressing lithium dendrites,and side reactions)are summarized from the physical and chemical perspective,including building protective layer,constructing 3D and gradient structures,etc.Finally,the remaining challenges and future development trends of solidstate electrolyte are prospected.This review provides a deep insight into solving the interfacial instability issues and promising solutions to enable practical high-energy-density lithium metal batteries. 展开更多
关键词 dendrite formation high energy density interface instability interfacial resistance solid-state electrolyte
下载PDF
Data-Driven Viewpoint for Developing Next-Generation Mg-Ion Solid-State Electrolytes
19
作者 Fang-Ling Yang Ryuhei Sato +5 位作者 Eric Jianfeng Cheng Kazuaki Kisu Qian Wang Xue Jia Shin-ichi Orimo Hao Li 《电化学(中英文)》 CAS 北大核心 2024年第7期38-49,共12页
Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o... Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs. 展开更多
关键词 Data mining Magnesium-ion solid-state electrolytes All-solid-state batteries Magnesium-ion conductivity
下载PDF
Solid-state NMR of the retinal protonated Schiff base in microbial rhodopsins
20
作者 Sari Kumagai Izuru Kawamura 《Magnetic Resonance Letters》 2024年第3期11-18,共8页
Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro... Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy. 展开更多
关键词 Membrane proteins Microbial rhodopsin RETINAL solid-state NMR Protonated Schiff base
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部