期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
A three-dimensional co-continuous network structure polymer electrolyte with efficient ion transport channels enabling ultralong-life all solid-state lithium metal batteries
1
作者 Meng Wang Hu Zhang +2 位作者 Yewen Li Ruiping Liu Huai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期635-645,共11页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries. 展开更多
关键词 solid-state electrolyte Lithium-metal batteries Liquid crystalline polymer COpolymer 3D co-continuous structure Long cycle stability
下载PDF
Anion competition for Li^(+)solvated coordination environments in poly(1,3 dioxolane)electrolyte to enable high-voltage lithium metal solid-state batteries
2
作者 Qiujun Wang Yanqiang Ma +6 位作者 Xiaomeng Jia Di Zhang Zhaojin Li Huilan Sun Qujiang Sun Bo Wang Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期633-641,共9页
Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affect... Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries. 展开更多
关键词 Li-metal batteries Poly(1 3-dioxolane) In situ polymerization solid-state polymer electrolytes Anion competition
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries
3
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
4
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
A gel polymer electrolyte with IL@UiO-66-NH_(2) as fillers for high-performance all-solid-state lithium metal batteries 被引量:2
5
作者 Tao Wei Qi Zhang +7 位作者 Sijia Wang Mengting Wang Ye Liu Cheng Sun Yanyan Zhou Qing Huang Xiangyun Qiu Fang Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1897-1905,共9页
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ... All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries. 展开更多
关键词 all solid-state lithium-ion batteries metal-organic frameworks gel polymer electrolytes ionic liquid solid electrolyte interphase
下载PDF
Electronegativity-Induced Single-Ion Conducting Polymer Electrolyte for Solid-State Lithium Batteries
6
作者 Tianyi Hou Yumin Qian +7 位作者 Dinggen Li Bo Xu Zhenyu Huang Xueting Liu Haonan Wang Bowen Jiang Henghui Xu Yunhui Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期40-48,共9页
The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the... The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the two longstanding issues of SPEs simultaneously.Electronegative lodine-containing groups introduced on polymer chains effectively attract Li^(+)ions,facilitate Li^(+)transport,and promote the dissociation of Li salts.Meanwhile,iodine is also favorable to alleviate the strong O-Li^(+)coordination through a Lewis acidbase interaction,further improving the ionic conductivity and t_(Li)^(+).As a proof of concept,an iodinated single-ion conducting polymer electrolyte(IPE)demonstrates a high ionic conductivity of 0.93 mS cm^(-1)and a high t_(Li)^(+)of 0.86 at 25℃,which is among the best results ever reported for SPEs.Moreover,symmetric Li/Li cells with IPE achieve a long-term stability over 2600 h through the in-situ formed LiF-rich interphase.As a result,Li-S battery with IPE maintains a high capacity of 623.7 mAh g^(-1)over 300 cycles with an average Coulombic efficiency of 99%.When matched with intercalation cathode chemistries,Li/IPE/LiFePO_(4)and Li/IPE/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)solid-state batteries also deliver high-capacity retentions of 95%and 97%at 0.2 C after 120 cycles,respectively. 展开更多
关键词 IODINE lithium polymer electrolytes single-ion conducting solid-state batteries
下载PDF
Emitting stability of poly(9,9-dialkylfluorene-co-N-butylcarbazole) by solid-state oxidative coupling polymerization
7
作者 Wei Bin Bai Zhi Yuan Chen Cai Mao Zhan 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第1期76-78,共3页
Dihexylfluorene and N-butylcarbazole were copolymerized by solid-state oxidative coupling polymerization in the presence of anhydrous FeCl3 at room temperature. The solid-state films of the copolymers emitted blue lig... Dihexylfluorene and N-butylcarbazole were copolymerized by solid-state oxidative coupling polymerization in the presence of anhydrous FeCl3 at room temperature. The solid-state films of the copolymers emitted blue light after beating at 150 ℃ in air for 24 h, no red-shifted emission was observed by fluorescence spectroscopy. 展开更多
关键词 solid-state oxidative coupling polymerization Fluorene-carbazole copolymer Emitting stability Photoluminescence
下载PDF
In Situ Directional Polymerization of Poly(1,3-dioxolane)Solid Electrolyte Induced by Cellulose Paper-Based Composite Separator for Lithium Metal Batteries 被引量:2
8
作者 Jian Ma Yueyue Wu +5 位作者 Hao Jiang Xin Yao Fan Zhang Xianglong Hou Xuyong Feng Hongfa Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期134-143,共10页
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic... In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries. 展开更多
关键词 cellulose paper-based composite separator in situ directional polymerization lithium metal battery poly-DOL electrolyte solid-state electrolyte
下载PDF
Three-in-one fire-retardant poly(phosphate)-based fast ion-conductor for all-solid-state lithium batteries 被引量:1
9
作者 Jiaying Xie Sibo Qiao +5 位作者 Yuyang Wang Jiefei Sui Lixia Bao He Zhou Tianshi Li Jiliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期324-334,I0008,共12页
The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes ... The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire.Herein,a series of solid-state polyphosphate oligomers(SPPO)as a three-in-one electrolyte that integrated the roles of lithium salt,dissociation matrix,and flame retardant were synthesized.The well-designed SPPO electrolytes showed an optimal ionic conductivity of 5.5×10^(-4)S cm-1at 30℃,an acceptable electrochemical window up to 4.0 V vs.Li/Li+,and lithium ion transference number of 0.547.Stable Li-ion stripping/plating behavior for 500 h of charge-discharge cycles without internal short-circuit in a Li|SPPO|Li cell was confirmed,together with outstanding interface compatibility between the SPPO electrolyte and lithium foil.The optimal Li|SPPO|LiFePO4cell presented good reversible discharge capacity of 149.4 mA h g-1at 0.1 C and Coulombic efficiency of 96.4%after 120 cycles.More importantly,the prepared SPPO cannot be ignited by the lighter fire and show a limited-oxygen-index value as high as 35.5%,indicating splendid nonflammable nature.The SPPO could be a promising candidate as a three-in-one solid-state electrolyte for the improved safety of rechargeable lithium batteries. 展开更多
关键词 Three-in-one Poly(phosphate) Organic fast ion-conductor solid-state polymer electrolyte Flame-retardant Secondary lithium batteries
下载PDF
Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries 被引量:6
10
作者 Lehao Liu Jinshan Mo +6 位作者 Jingru Li Jinxin Liu Hejin Yan Jing Lyu Bing Jiang Lihua Chu Meicheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期334-343,I0010,共11页
Polyethylene oxide(PEO)-based electrolytes have obvious merits such as strong ability to dissolve salts(e.g.,LiTFSI)and high flexibility,but their applications in solid-state batteries is hindered by the low ion condu... Polyethylene oxide(PEO)-based electrolytes have obvious merits such as strong ability to dissolve salts(e.g.,LiTFSI)and high flexibility,but their applications in solid-state batteries is hindered by the low ion conductance and poor mechanical and thermal properties.Herein,poly(m-phenylene isophthalamide)(PMIA)is employed as a multifunctional additive to improve the overall properties of the PEO-based electrolytes.The hydrogen-bond interactions between PMIA and PEO/TFSI-can effectively prevent the PEO crystallization and meanwhile facilitate the LiTFSI dissociation,and thus greatly improve the ionic conductivity(two times that of the pristine electrolyte at room temperature).With the incorporation of the high-strength PMIA with tough amide-benzene backbones,the PMIA/PEO-LiTFSI composite polymer electrolyte(CPE)membranes also show much higher mechanical strength(2.96 MPa),thermostability(4190℃)and interfacial stability against Li dendrites(468 h at 0.10 mA cm-2)than the pristine electrolyte(0.32 MPa,364℃and short circuit after 246 h).Furthermore,the CPE-based LiFePO4/Li cells exhibit superior cycling stability(137 mAh g^-1 with 93%retention after 100 cycles at 0.5 C)and rate performance(123 mAh g^-1 at 1.0 C).This work provides a novel and effective CPE structure design strategy to achieve comprehensively-upgraded electrolytes for promising solid-state battery applications. 展开更多
关键词 Poly(m-phenylene isophthalamide) Composite polymer electrolyte Ion conductance Mechanical strength solid-state battery
下载PDF
Semi-interpenetrating-network all-solid-state polymer electrolyte with liquid crystal constructing efficient ion transport channels for flexible solid lithium-metal batteries 被引量:1
11
作者 Qinghui Zeng Yu Lu +9 位作者 Pingping Chen Zhenfeng Li Xin Wen Wen Wen Yu Liu Shuping Zhang Hailei Zhao Henghui Zhou Zhi-xiang Wang Liaoyun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期157-167,共11页
The development of the solid-state polymer electrolytes (SPEs) for Li-ion batteries (LIBs) can effectively address the hidden safety issues of commercially used liquid electrolytes.Nevertheless,the unsatisfactory room... The development of the solid-state polymer electrolytes (SPEs) for Li-ion batteries (LIBs) can effectively address the hidden safety issues of commercially used liquid electrolytes.Nevertheless,the unsatisfactory room temperature ion conductivity and inferior mechanical strength for linear PEO-based SPEs are still the immense obstacles impeding the further applications of SPEs for large-scale commercialization.Herein,we fabricate a series of semi-interpenetrating-network (semi-IPN) polymer electrolytes based on a novel liquid crystal (C6M LC) and poly(ethylene glycol) diglycidyl ether (PEGDE) via UV-irradiation at the first time.The LCs not only highly improve the mechanical properties of electrolyte membranes via the construction of network structure with PEGDE,but also create stable ion transport channels for ion conduction.As a result,a free-standing flexible SPE shows outstanding ionic conductivity(5.93×10^(-5) S cm^(-1) at 30℃),a very wide electrochemical stability window of 5.5 V,and excellent thermal stability at thermal decomposition temperatures above 360℃ as well as the capacity of suppressing lithium dendrite growth.Moreover,the LiFePO_(4)/Li battery assembled with the semi-IPN electrolyte membranes exhibits good cycle performance and admirable reversible specific capacity.This work highlights the obvious advantages of LCs applied to the electrolyte for the advanced solid lithium battery. 展开更多
关键词 solid-state polymer electrolyte Liquid crystal Semi-interpenetrating-network Ion transport channels Lithium battery
下载PDF
Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries
12
作者 Junbao Kang Nanping Deng +1 位作者 Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期26-42,共17页
Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed... Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs. 展开更多
关键词 Composite solide lectrolytes polymer fibers solid-state lithium metal batteries solid-stateel ectrolytes Nanofiber membranes
下载PDF
Understand the Temperature Sensing Behavior of Solid-state Polymerized PEDOT Hybrid Based on X-ray Scattering Studies
13
作者 Zhen-Hang He Guang-Feng Liu +3 位作者 Ze-Kun Zhou Zhen Liu Yi-Shu Zeng Peng Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第1期105-112,I0010,共9页
Poly(3,4-ethylenedioxythiophene)(PEDOT) is one of the most successful conductive polymers that recently has been used in wearable sensors for human health monitoring. In this work, we prepared a series of PEDOT hybrid... Poly(3,4-ethylenedioxythiophene)(PEDOT) is one of the most successful conductive polymers that recently has been used in wearable sensors for human health monitoring. In this work, we prepared a series of PEDOT hybrids consisting of PEDOT, sodium poly(styrene sulfonate)(PSSNa) and polyethylene oxide(PEO), and their preparation could be scaled-up via an adapted solid-state polymerization process. The resistance of the as-prepared PEDOT:PSS/PEO hybrid shows clear temperature response, i.e., it decreases almost linearly with the temperature increase. To understand this phenomenon, the in situ synchrotron radiation wide-and small-angle X-ray scattering(WAXS/SAXS) characterizations were undertaken to study the temperature-dependent microstructure change of the PEDOT:PSS/PEO hybrid. It demonstrated that PEDOT formed conductive paths in the hybrids, which were not destroyed by the PEO crystallization. As temperature increased, the PEO crystals' melting and the accompanying reorganization of PEDOT chains endowed the hybrid sample temperature responsiveness. Based on these fundamental knowledges, the hybrid materials were used to fabricate flexible wearable sensor that showing temperature sensing performance with an accuracy of 1 ℃. These findings shed lights on the scalable manufacturing of wearable sensors for body temperature monitoring. 展开更多
关键词 solid-state polymerization PEDOT hybrid Structure-property correlation X-ray scattering
原文传递
Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries
14
作者 Qianqian Song Yunting Zhang +3 位作者 Jianli Liang Si Liu Jian Zhu Xingbin Yan 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期216-221,共6页
Polyethylene oxide(PEO)-based solid-state polymer electrolytes(SPEs)are limited by their poor cyclic stability and inferior ionic conductivity for applicating in high-safety,long-cycling and high-energy-density lithiu... Polyethylene oxide(PEO)-based solid-state polymer electrolytes(SPEs)are limited by their poor cyclic stability and inferior ionic conductivity for applicating in high-safety,long-cycling and high-energy-density lithium metal batteries.Herein,porous boron nitride nanofibers(BNNFs)are filled into PEO-based SPE,which significantly suppresses Li dendrites growth and enhances the electrochemical performance of Li metal battery.BNNFs with high porosity have more active sites to connect with PEO,which can effectively reduce the crystallinity of the PEO matrix and enhance its ionic conductivity.Moreover,owing to the hardness and good stability of BNNFs,BNNFs/PEO/Li TFSI electrolyte exhibits a wider electrochemical window,better mechanical property and higher thermal stability compared with PEO/Li TFSI electrolyte.Consequently,the Li symmetric cell composed of 1%BNNFs/PEO/Li TFSI performs good cyclic stability(>1800 h),and the Li||1%BNNFs/PEO/Li TFSI||LFP full battery shows obviously improved performances in charge-discharge polarization voltage,discharge specific capacity,rate performance and cyclic stability than the Li||PEO/Li TFSI||LFP battery. 展开更多
关键词 solid-state polymer electrolyte Boron nitride nanofibers Lithium metal battery Ionic conductivity Li dendrite
原文传递
Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries 被引量:5
15
作者 Tengrui Wang Ruiqi Zhang +4 位作者 Yongmin Wu Guannan Zhu Chenchen Hu Jiayun Wen Wei Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期187-190,I0006,共5页
Lithium-ion batteries(LIBs)have greatly facilitated our daily lives since 1990s[1,2].To meet the ever-increasing demand on energy density,Li metal is seen as the ultimate anode because of its ultra-high specific capac... Lithium-ion batteries(LIBs)have greatly facilitated our daily lives since 1990s[1,2].To meet the ever-increasing demand on energy density,Li metal is seen as the ultimate anode because of its ultra-high specific capacity(3860 m Ah/g)and the lowest electrochemical potential(-3.04 V vs.the standard hydrogen electrode)[3–6].However,issues of Li metal anode,such as Li dendrite formation and large volume change during plating/stripping。 展开更多
关键词 solid-state batteries Solid polymer electrolytes BLENDING Li6.5La3Zr1.5Ta0.5O12 Mechanical strength
下载PDF
Solid-State Electrolytes for Lithium-Sulfur Batteries 被引量:1
16
作者 Zhang Huiming Guo Cheng +2 位作者 Nuli Yanna Yang Jun Wang Jiulin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期565-577,共13页
Secondary lithium-sulfur batteries have attracted extensive attention due to their high energy density,low cost and environment friendly.However,the"shuttle effect"of polysulfides dissolved in liquid electro... Secondary lithium-sulfur batteries have attracted extensive attention due to their high energy density,low cost and environment friendly.However,the"shuttle effect"of polysulfides dissolved in liquid electrolytes leads to a decrease of the cell Coulomb efficiency(CE).Therefore,researchers have used solid electrolytes instead of traditional liquid electrolytes and separators to suppress the"shuttle effect"of polysulfides and the growth of lithium dendrites.The progress in electrolytes for solid-state lithium-sulfur batteries including solid-state polymer,inorganic,and composite electrolytes to solve the issues is summarized. 展开更多
关键词 lithium-sulfur batteries solid-state polymer electrolytes inorganic electrolytes composite electrolytes
下载PDF
In situ formed cross-linked polymer networks as dual-functional layers for high-stable lithium metal batteries 被引量:1
17
作者 Lei Shi Wanhui Wang +7 位作者 Chunjuan Wang Yang Zhou Yuezhan Feng Tiekun Jia Fang Wang Zhiyu Min Ji Hu Zhigang Xue 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期253-262,共10页
Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability drama... Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance. 展开更多
关键词 Lithium-metal anode Humid-resistant protective film solid-state polymer electrolytes Cross-linked polymers
下载PDF
Study of the coordinative nature of alkylaluminum modified Phillips CrO_x/SiO_2 catalyst by multinuclear solid-state NMR
18
作者 Zhang Qin-Hui Yan Fang +1 位作者 Xia Wei Liu Chenguang 《Petroleum Science》 SCIE CAS CSCD 2013年第4期577-583,共7页
Solid-state nuclear magnetic resonance spectroscopy was used to investigate the coordinative states of surface Al species on various alkylaluminum-modified Phillips CrOx/SiO2 catalysts.The alkylaluminum-modified Phill... Solid-state nuclear magnetic resonance spectroscopy was used to investigate the coordinative states of surface Al species on various alkylaluminum-modified Phillips CrOx/SiO2 catalysts.The alkylaluminum-modified Phillips CrOx/SiO2 catalysts were examined via ethylene homopolymerization.1H and 27Al magic angle spinning(MAS) nuclear magnetic resonance(NMR) spectra clearly demonstrated that the existing states of surface Al species in alkylaluminum-modified catalysts strongly depended on the type of alkylaluminum cocatalyst,concentration of alkylaluminum and the calcination temperature.1H MAS NMR spectra of alkylaluminum-modified Phillips CrOx/SiO2 catalysts,calcined at two different temperatures,exhibited similar trends in peak shift.1H spectra showed that with an increase of Al/Cr ratio and calcination temperature,the main peak shifted to high field,indicating that the dominant surface proton species changed from hydroxyl to ethoxyl and ethyl groups.27Al MAS NMR spectra showed the presence of three different coordination states(6-,5-,and 4-coordinated Al species) in the alkylaluminummodified Phillips catalysts.In comparison of different alkylaluminum cocatalysts,it was found that the reactivity of alkylaluminum modified Phillips catalyst decreased in the order of TEA〉DEAH〉DEAE.The amount of 4-coordinated Al species of Phillips catalysts modified by TEA,DEAE and DEAH also decreased in the order of TEA〉DEAH〉DEAE,indicating that the presence of 4-coordinated Al species is related to the polymerization activity. 展开更多
关键词 Phillips catalyst ALKYLALUMINUM ethylene polymerization solid-state NMR
下载PDF
Studies on Epitaxial Polymerization of 1,3-Bis(3-quinolyl)-1,4-butadiyne
19
作者 LiTie-Sheng ShujiOkada HachiroNakanishi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第2期188-190,共3页
During investigating what causes the low yield of the polymerization product of 1,4-bis(quinolyl)-1,3-butadiyne(DQ), we found that the DQ crystals formed on the surface of PDQ cauld be polymerized to give blue cryst... During investigating what causes the low yield of the polymerization product of 1,4-bis(quinolyl)-1,3-butadiyne(DQ), we found that the DQ crystals formed on the surface of PDQ cauld be polymerized to give blue crystals, in which DQ could be sublimated and crystallized on the surface of PDQ film. According to the experimental results, the reason why the DQ crystals can be polymerized is that the sublimation of DQ changes the molecular orientation of DQ in the crystal. The crystals formed in epitaxial growth on the surface of DQ or PDQ during sublimation of DQ are suitable for 1,4-addition polymerization. 展开更多
关键词 Epitaxial growth POLYDIACETYLENE topochemISTRY solid-state polymerization
下载PDF
Flexible ion-conducting membranes with 3D continuous nanohybrid networks for high-performance solid-state metallic lithium batteries
20
作者 Lehao Liu Dongmei Zhang +9 位作者 Tianrong Yang Weihao Hu Xianglong Meng Jinshan Mo Wenyan Hou Qianxiao Fan Kai Liu Bing Jiang Lihua Chu Meicheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期360-368,I0009,共10页
Polyethylene oxide(PEO)-based electrolytes are considered as one of the most promising solid-state electrolytes for next-generation lithium batteries with high safety and energy density;however,the drawbacks such as i... Polyethylene oxide(PEO)-based electrolytes are considered as one of the most promising solid-state electrolytes for next-generation lithium batteries with high safety and energy density;however,the drawbacks such as insufficient ion conductance,mechanical strength and electrochemical stability hinder their applications in metallic lithium batteries.To enhance their overall properties,flexible and thin composite polymer electrolyte(CPE)membranes with 3D continuous aramid nanofiber(ANF)–Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)nanoparticle hybrid frameworks are facilely prepared by filling PEO–Li TFSI in the 3D nanohybrid scaffolds via a solution infusion way.The construction of the 3D continuous nanohybrid networks can effectively inhibit the PEO crystallization,facilitate the lithium salt dissociation and meanwhile increase the fast-ion transport in the continuous LATP electrolyte phase,and thus greatly improving the ionic conductivity(~3 times that of the pristine one).With the integration of the 3D continuity and flexibility of the 3D ANF networks and the thermostability of the LATP phase,the CPE membranes also show a wider electrochemical window(~5.0 V vs.4.3 V),higher tensile strength(~4–10times that of the pristine one)and thermostability,and better lithium dendrite resistance capability.Furthermore,the CPE-based Li FePO_(4)/Li cells exhibit superior cycling stability(133 m Ah/g after 100 cycles at 0.3 C)and rate performance(100 m Ah/g at 1 C)than the pristine electrolyte-based cell(79 and 29m Ah/g,respectively).This work offers an important CPE design criteria to achieve comprehensivelyupgraded solid-state electrolytes for safe and high-energy metal battery applications. 展开更多
关键词 Composite polymer electrolyte Aramid nanofiber Ceramic electrolyte nanoparticle Ion conductivity Mechanical strength solid-state battery
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部