The Mg-4.58Gd-0.45Y-0.01 Er alloys with different volume fractions of columnar crystals in hard orientation(orientation factor ofbasal plane slip system is less than 0.2)were prepared by changing the pulling rate to r...The Mg-4.58Gd-0.45Y-0.01 Er alloys with different volume fractions of columnar crystals in hard orientation(orientation factor ofbasal plane slip system is less than 0.2)were prepared by changing the pulling rate to regulate the crystal growth orientation.Tensile tests were performed on the Mg-4.58Gd-0.45Y-0.01 Er alloy at room temperature,and the structure after deformation was investigated by electron backscatter diffraction(EBSD).Subsequently,the strengthening mechanism of columnar crystals in hard orientation was explored.The results show if orientation factors ofbasal plane slip system of columnar crystals are all greater than 0.4(soft orientation),the alloy has low yield strength σ_(s)(64 MPa),but great work hardening ability,and ultimate tensile strength σ_(b) and elongationδare 114 MPa and 37.3%,respectively.If orientation factors ofbasal plane slip system of columnar crystals are all less than 0.2(hard orientation),the alloy has high strength(σ_(s),125 MPa),but poor plasticity(δ,6.32%).If the"hard orientation"and the"soft orientation"columnar crystals are arranged alternately along the direction perpendicular to the crystal growth,the alloy has both superior strength(σ_(s),102 MPa)and excellent plasticity(δ,22.5%)at room temperature.The improved comprehensive mechanical property can be attributed to two factors.On the one hand,the"hard orientation"columnar crystals can prevent the"soft orientation"crystals deforming,so the strength is improved.On the other hand,the"hard orientation"columnar crystals themselves can withstand a certain amount of deformation to retain appropriate plasticity.展开更多
Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different...Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.展开更多
Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO t...Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm.V-1-s-1 and the lowest resistivity of 2.4× 10^-3 Ω.cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.展开更多
This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18...This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.展开更多
The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U...The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.展开更多
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore co...Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .展开更多
基金the National Natural Science Foundation of China(Nos.51775099 and 51675092)the Natural Science Foundation of Hebei Province(E2018501032 and E2018501033)。
文摘The Mg-4.58Gd-0.45Y-0.01 Er alloys with different volume fractions of columnar crystals in hard orientation(orientation factor ofbasal plane slip system is less than 0.2)were prepared by changing the pulling rate to regulate the crystal growth orientation.Tensile tests were performed on the Mg-4.58Gd-0.45Y-0.01 Er alloy at room temperature,and the structure after deformation was investigated by electron backscatter diffraction(EBSD).Subsequently,the strengthening mechanism of columnar crystals in hard orientation was explored.The results show if orientation factors ofbasal plane slip system of columnar crystals are all greater than 0.4(soft orientation),the alloy has low yield strength σ_(s)(64 MPa),but great work hardening ability,and ultimate tensile strength σ_(b) and elongationδare 114 MPa and 37.3%,respectively.If orientation factors ofbasal plane slip system of columnar crystals are all less than 0.2(hard orientation),the alloy has high strength(σ_(s),125 MPa),but poor plasticity(δ,6.32%).If the"hard orientation"and the"soft orientation"columnar crystals are arranged alternately along the direction perpendicular to the crystal growth,the alloy has both superior strength(σ_(s),102 MPa)and excellent plasticity(δ,22.5%)at room temperature.The improved comprehensive mechanical property can be attributed to two factors.On the one hand,the"hard orientation"columnar crystals can prevent the"soft orientation"crystals deforming,so the strength is improved.On the other hand,the"hard orientation"columnar crystals themselves can withstand a certain amount of deformation to retain appropriate plasticity.
基金supported by the National Science and Technology Pillar Program,China(Grant No.2015BAK17B06)the Earthquake Industry Special Science Research Foundation Project,China(Grant No.201508026-02)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(Grant No.A201310)the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province,China(Grant No.LBHQ13040)
文摘Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.
基金supported by the National Natural Science Foundation of China (Grant No. 10974174)the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Z6100117, Z1110057, and Y4080171)
文摘Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm.V-1-s-1 and the lowest resistivity of 2.4× 10^-3 Ω.cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.
基金supported by the National Natural Science Foundation of China (Grant No. 60807001)the National Basic Research Program of China (Grant No. 2011CB201605)the Foundation of Henan Educational Committee (Grant No. 2010A140017)
文摘This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.
文摘The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.
基金Natural Science Foundation of Anhui Province, 2008085QG343, Research on Development and Evolution Mechanism and Policy of Artificial Intelligence Open Innovation Platform。
文摘Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. .