The ice forming rates p_i produced by supersonic flow have been measured in supercooled fog suspended in a cold chamber at temperatures of 0 to-12℃.It has been shown that the ice-forming rates are 10^(11)to 10^(12)cr...The ice forming rates p_i produced by supersonic flow have been measured in supercooled fog suspended in a cold chamber at temperatures of 0 to-12℃.It has been shown that the ice-forming rates are 10^(11)to 10^(12)crystals per gram of air at Mach numbers of 1.1 to 1.84 and total pressures below 6 atm,and that the ice-forming rates slowly increase with increasing Mach numbers and total pressures and with decreasing ambient temperatures.These results are theoretically consistent with the rules for expansion in supersonic flow. In review of mechanisms of ice crystal generation,authors propose that the homogeneous nucleation-freezing (condensation-freezing)of water vapor in supersonic flow be the dominant mechanism.In our opinion,supersonic flow, for artificial precipitation,could be expected to provide an economical,non-polluting and convenient technology,and suitable for the long-distance operation.The data obtained from our experiments indicate that it is feasible to develop a new technique for weather modification.展开更多
基金This project was supported by National Natural Science Foundation of China.
文摘The ice forming rates p_i produced by supersonic flow have been measured in supercooled fog suspended in a cold chamber at temperatures of 0 to-12℃.It has been shown that the ice-forming rates are 10^(11)to 10^(12)crystals per gram of air at Mach numbers of 1.1 to 1.84 and total pressures below 6 atm,and that the ice-forming rates slowly increase with increasing Mach numbers and total pressures and with decreasing ambient temperatures.These results are theoretically consistent with the rules for expansion in supersonic flow. In review of mechanisms of ice crystal generation,authors propose that the homogeneous nucleation-freezing (condensation-freezing)of water vapor in supersonic flow be the dominant mechanism.In our opinion,supersonic flow, for artificial precipitation,could be expected to provide an economical,non-polluting and convenient technology,and suitable for the long-distance operation.The data obtained from our experiments indicate that it is feasible to develop a new technique for weather modification.