IN617B nickel-base superalloy is considered as a good candidate material in 700℃advanced ultrasupercritical coal-fired power plants.The effect of Ta addition on solidification microstructure and element segregation o...IN617B nickel-base superalloy is considered as a good candidate material in 700℃advanced ultrasupercritical coal-fired power plants.The effect of Ta addition on solidification microstructure and element segregation of IN617B alloy was investigated by OM,SEM,TEM,EDS,EPMA and thermodynamic calculation.The results showed that the solidification microstructure exhibited a dendritic segregation pattern with many primary carbides distributed in interdendritic regions,such as network M_(6)C,lath M_(23)C_(6) and granular Ti(C,N).The addition of Ta promoted the precipitation of Ta-rich MC significantly inhibiting the precipitation of M_(6)C and M_(23)C_(6),and reduced the segregation degree of Al,Mo and Ti alloying elements.The addition of Ta decreased the melting temperature of MC carbide,but did not impact the solidification path,that was,L→γmatrix→MC or Ti(C,N)→M_(6)C→M_(23)C_(6),where MC and Ti(C,N)tended to form symbiotic microstructure with M_(6)C.This study will provide theoretical basis and data support for the alloy optimization and casting structure control of IN617B nickel-based superalloy.展开更多
The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show t...The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys展开更多
The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship...The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process.展开更多
The solidification characteristics and the hot tearing susceptibility were investigated on two Ni-based superalloys for turbocharger turbine wheel, K418 and K419. The segregation behaviors of the alloying elements and...The solidification characteristics and the hot tearing susceptibility were investigated on two Ni-based superalloys for turbocharger turbine wheel, K418 and K419. The segregation behaviors of the alloying elements and the precipitation phases were also studied. The results show that the solidification behavior of K419 alloy is complicated when compared with K418 due to the interdendritic segregation of many kinds of strong interdendritic partitioning elements in the remaining liquid at the final stage of solidification. The segregation of multiple elements in interdendritic liquid results in an extremely low solidus in K419. A long residual liquid stage is found during the solidification of K419, giving rise to reduced cohesion strength of dendrites and increased sensitivity to hot tearing. A hot tearing susceptibility coefficient(HTS) criterion is proposed based on a hot tearing sensitive model. The HTS value of K419 alloy is larger than that of K418 alloy.展开更多
Differential scanning calorimetry (DSC) analysis, isothermal solidification experiment and Thermo-Calc simulation were employed to investigate solidification characteristics of K417G Ni-base superalloy. Elec- tron p...Differential scanning calorimetry (DSC) analysis, isothermal solidification experiment and Thermo-Calc simulation were employed to investigate solidification characteristics of K417G Ni-base superalloy. Elec- tron probe microanalysis (EPMA) was employed to analyze the segregation characteristics. Liquidus, solidus and the formation temperatures of main phases were measured. In the process of solidification, the volume fraction of liquid dropped dramatically in the initial stage, while the dropping rate became very low in the final stage due to severe segregation of positive segregation elements into the residual liquid. The solidification began with the formation of primary γ. Then with solidification proceeding, Ti and Mo were enriched in the liquid interdendrite, which resulted in the precipitation of MC carbides in the interdendrite. A1 accumulated into liquid at the initial stage, but gathered to solid later due to the precipitation of γ/γ' eutectic at the intermediate stage of solidification. However, Co tended to segregate toward the solid phase. In the case of K417G alloy, combining DSC analysis and isothermal solidification experiment is a good way to investigate the solidification characteristics. Thermo-Calc simulation can serve as reference to investigate K417G alloy.展开更多
The total content of Al and Ti in advanced Ni-based wrought superalloys is up to 7.5wt.%,which makes it easier to form harmful nonequilibrium eutectic(γ+γ′)andηphase.It has been reported that the addition of certa...The total content of Al and Ti in advanced Ni-based wrought superalloys is up to 7.5wt.%,which makes it easier to form harmful nonequilibrium eutectic(γ+γ′)andηphase.It has been reported that the addition of certain amount of Zr can modify precipitation of the nonequilibrium phases obviously,but the mechanism is still controversial.The effect of Zr ranging from<0.0006wt.%to 0.150wt.%on solidification behavior,segregation and microstructure of a Ni-based superalloy with high Al and Ti contents was investigated,eliminating the interferences of C and B.Results show that increase in Zr content significantly promotes the formation of eutectic(γ+γ′),ηand Zr-rich phase in the interdendritic region.Besides the Zr-rich phase,Zr dissolves slightly in the eutecticγ′and obviously in theηphase.An interesting phenomenon is discovered that the Zr addition significantly increases the area fraction of liquid pools and enlarges the forming range ofγdendrites,which suggests that Zr markedly retards the solidification.Zr affects the eutectic(γ+γ′)andηformation mainly due to the retard of solidification and dissolution of Zr in them.The retard of solidification obviously increases the residual liquid fraction and undercooling.Zr can serve as a forming element for the eutectic(γ+γ′)andηphase,and the obvious dissolution of Zr inηphase significantly decreases the critical concentration of Ti for its precipitation.展开更多
The effect of chromium(Cr) on solidification and segregation behavior of Re-containing cast Ni-base superalloys was investigated by optical microscopy(OM),scanning electron microscopy(SEM) and electronic probe m...The effect of chromium(Cr) on solidification and segregation behavior of Re-containing cast Ni-base superalloys was investigated by optical microscopy(OM),scanning electron microscopy(SEM) and electronic probe micro analysis(EPMA).The results show that Cr has significant effect on solidification and segregation behavior of Re-containing cast Ni-base superalloys.The liquidus and solidus of alloy decrease with increasing Cr in alloys.The segregation coefficient(K) of Mo increases and that of W and Re decreases gradually with increasing Cr element.展开更多
The interdendritic segregation along the mushy zone of directionally solidified superalloy Inconel 718 has been measured by scanning electron microscope (SEM) and energy dispersion analysis spectrometry (EDAX) techniq...The interdendritic segregation along the mushy zone of directionally solidified superalloy Inconel 718 has been measured by scanning electron microscope (SEM) and energy dispersion analysis spectrometry (EDAX) techniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra) profiles along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fluid flow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 degrees C for Inconel 718 where the fluid flow most easily occurred.展开更多
The features of microstructure and their influence on mechanical properties on stress-rupture as well as thermal fatigue of directionally solidified DZ38G nickel-base su- peralloy have been investigated.It has been fo...The features of microstructure and their influence on mechanical properties on stress-rupture as well as thermal fatigue of directionally solidified DZ38G nickel-base su- peralloy have been investigated.It has been found that the contents of carbides on grain boundaries are increased and morphology of γ'- precipitates has been changed after testing. Particularly γ'-precipitates coalesced into raft-like in morphology perpendicular to the applied stress-axis have been observed that has no detrimental effect on the stress-rupture behaviour.The tendency of σ-formation has also been discussed.The σ-phase can be avoided when the process parameters are chosen appropriately during solidification.展开更多
The effect of carbon ranging from 0.014 to 0.071 wt.%on the solidification and microstructure of a Ni-based superalloy with high Al and Ti contents was studied.The results show that the increase in carbon addition sig...The effect of carbon ranging from 0.014 to 0.071 wt.%on the solidification and microstructure of a Ni-based superalloy with high Al and Ti contents was studied.The results show that the increase in carbon addition significantly increases the size and volume fraction of MC carbides and promotes the change of their morphology from blocky to elongated shape.However,the carbon addition obviously decreases the size and volume fraction of eutectic(γ+γ′)and reducesηphase and borides formation.The change in carbide characteristics is mainly because of the increasing carbide-forming element and carbides precipitation temperature with the increase in carbon which favors the growth of them along the interdendritic liquid film.MC carbides are formed at an earlier solidification stage than the eutectic(γ+γ′).The increased carbide formation consumes more Ti,which delays and reduces the eutectic(γ+γ′)precipitation.The delay of eutectic(γ+γ′)precipitation leads to a deeper undercooling,which significantly decreases the critical Ti concentration for its precipitation.This,in turn,lowers Ti/Al ratio in residual liquids ahead of the eutectic(γ+γ′)and hence reducesηformation subsequently.B and Zr are slightly enriched in the carbides,which are considered during discussing how carbon influences the eutectic(γ+γ′)precipitation.展开更多
Understanding the effects of various elements on solidification behavior is crucial for designing the composition ofγ’-strengthened Co-based superalloys and is fundamental for controlling the as-cast structure and f...Understanding the effects of various elements on solidification behavior is crucial for designing the composition ofγ’-strengthened Co-based superalloys and is fundamental for controlling the as-cast structure and formulating subsequent heat treatment processes.This research investigated the effects of replacing 1 at.%W with 1 at.%Nb or Hf elements on the solidification behavior of Co-Ni-Al-W-based superalloys.The findings revealed that substituting W with Nb and Hf resulted in a notable decrease in both the solidus temperature(TS)and liquidus temperature(TL).Specifically,the substitution of W with Nb lowered TS from 1353℃ to 1332℃ and TL from 1383℃ to 1368℃,while replacing W with Hf decreased TS from 1353℃ to 1330℃ and TL from 1383℃ to 1366℃.Moreover,both Nb and Hf element are positive segregation element,while Nb decreases and Hf increases W segregation,respectively.During the final solidification stage,the substitution of W with Nb resulted in the formation of eutectic(γ+γ’),Co_(3)Ta,and a small amount ofμ-Co7Nb6 phase,while replacing W with Hf resulted in the formation of the Laves phase andβ-CoAl phase.The solidification paths of the three alloys were confirmed based on the result of differential scanning calorimetry,isothermal solidification experiment and Thermo-calc simulation.These results offer a theoretical basis for the composition design and optimization of heat treatment processes for Co-Ni-Al-W-based superalloys.展开更多
Design of heat treatments is related to the key technology for development of nickel-based single crystal superalloys(Ni-SXs). Based on the full understanding of the solidification characteristics, this work applies o...Design of heat treatments is related to the key technology for development of nickel-based single crystal superalloys(Ni-SXs). Based on the full understanding of the solidification characteristics, this work applies optimization design of heat treatments for a second-generation Ni-SX. Microstructure evolution and creep properties are compared in the material under conventional/standard(Std.) and optimized(Opt.) treatments. For the Std. sample,strong dendritic segregations determine inconsistent microstructure evolution in the dendritic(D) and interdendritic region(ID), while the latter serves as weak area to have the prior microcrack initiation, damaging overall performance of the alloy. The Opt. treatment applies higher homogenization temperature, leading to overall reduced segregations, while not inducing incipient melting. A lower temperature of first-step ageing is used to lower the size ofγ'particles. These help to form the more uniform microstructure in dendritic and interdendritic region and relieve the inconsistent microstructure evolution. The balanced local strength makes ID no longer as the weak area,thus restricting microcrack initiation. Great improvement of high temperature and low stress property is obtained by this progress, leading to the pronounced increase of creep rupture life under 1100 °C/140 MPa.展开更多
文摘IN617B nickel-base superalloy is considered as a good candidate material in 700℃advanced ultrasupercritical coal-fired power plants.The effect of Ta addition on solidification microstructure and element segregation of IN617B alloy was investigated by OM,SEM,TEM,EDS,EPMA and thermodynamic calculation.The results showed that the solidification microstructure exhibited a dendritic segregation pattern with many primary carbides distributed in interdendritic regions,such as network M_(6)C,lath M_(23)C_(6) and granular Ti(C,N).The addition of Ta promoted the precipitation of Ta-rich MC significantly inhibiting the precipitation of M_(6)C and M_(23)C_(6),and reduced the segregation degree of Al,Mo and Ti alloying elements.The addition of Ta decreased the melting temperature of MC carbide,but did not impact the solidification path,that was,L→γmatrix→MC or Ti(C,N)→M_(6)C→M_(23)C_(6),where MC and Ti(C,N)tended to form symbiotic microstructure with M_(6)C.This study will provide theoretical basis and data support for the alloy optimization and casting structure control of IN617B nickel-based superalloy.
基金Projects(2011CB610406,2010CB631202)supported by the National Basic Research Program of ChinaProjects(51101120,50931004,51171151)supported by the National Natural Science Foundation of China
文摘The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys
文摘The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process.
基金Project(2010CB631200)supported by the National Basic Research Program of China
文摘The solidification characteristics and the hot tearing susceptibility were investigated on two Ni-based superalloys for turbocharger turbine wheel, K418 and K419. The segregation behaviors of the alloying elements and the precipitation phases were also studied. The results show that the solidification behavior of K419 alloy is complicated when compared with K418 due to the interdendritic segregation of many kinds of strong interdendritic partitioning elements in the remaining liquid at the final stage of solidification. The segregation of multiple elements in interdendritic liquid results in an extremely low solidus in K419. A long residual liquid stage is found during the solidification of K419, giving rise to reduced cohesion strength of dendrites and increased sensitivity to hot tearing. A hot tearing susceptibility coefficient(HTS) criterion is proposed based on a hot tearing sensitive model. The HTS value of K419 alloy is larger than that of K418 alloy.
文摘Differential scanning calorimetry (DSC) analysis, isothermal solidification experiment and Thermo-Calc simulation were employed to investigate solidification characteristics of K417G Ni-base superalloy. Elec- tron probe microanalysis (EPMA) was employed to analyze the segregation characteristics. Liquidus, solidus and the formation temperatures of main phases were measured. In the process of solidification, the volume fraction of liquid dropped dramatically in the initial stage, while the dropping rate became very low in the final stage due to severe segregation of positive segregation elements into the residual liquid. The solidification began with the formation of primary γ. Then with solidification proceeding, Ti and Mo were enriched in the liquid interdendrite, which resulted in the precipitation of MC carbides in the interdendrite. A1 accumulated into liquid at the initial stage, but gathered to solid later due to the precipitation of γ/γ' eutectic at the intermediate stage of solidification. However, Co tended to segregate toward the solid phase. In the case of K417G alloy, combining DSC analysis and isothermal solidification experiment is a good way to investigate the solidification characteristics. Thermo-Calc simulation can serve as reference to investigate K417G alloy.
基金financially supported by the National Natural Science Foundation of China(Grant No.51904146)。
文摘The total content of Al and Ti in advanced Ni-based wrought superalloys is up to 7.5wt.%,which makes it easier to form harmful nonequilibrium eutectic(γ+γ′)andηphase.It has been reported that the addition of certain amount of Zr can modify precipitation of the nonequilibrium phases obviously,but the mechanism is still controversial.The effect of Zr ranging from<0.0006wt.%to 0.150wt.%on solidification behavior,segregation and microstructure of a Ni-based superalloy with high Al and Ti contents was investigated,eliminating the interferences of C and B.Results show that increase in Zr content significantly promotes the formation of eutectic(γ+γ′),ηand Zr-rich phase in the interdendritic region.Besides the Zr-rich phase,Zr dissolves slightly in the eutecticγ′and obviously in theηphase.An interesting phenomenon is discovered that the Zr addition significantly increases the area fraction of liquid pools and enlarges the forming range ofγdendrites,which suggests that Zr markedly retards the solidification.Zr affects the eutectic(γ+γ′)andηformation mainly due to the retard of solidification and dissolution of Zr in them.The retard of solidification obviously increases the residual liquid fraction and undercooling.Zr can serve as a forming element for the eutectic(γ+γ′)andηphase,and the obvious dissolution of Zr inηphase significantly decreases the critical concentration of Ti for its precipitation.
文摘The effect of chromium(Cr) on solidification and segregation behavior of Re-containing cast Ni-base superalloys was investigated by optical microscopy(OM),scanning electron microscopy(SEM) and electronic probe micro analysis(EPMA).The results show that Cr has significant effect on solidification and segregation behavior of Re-containing cast Ni-base superalloys.The liquidus and solidus of alloy decrease with increasing Cr in alloys.The segregation coefficient(K) of Mo increases and that of W and Re decreases gradually with increasing Cr element.
基金supported by the National Natural Science Foundation of China (No. 50371006)the school fund of Nanjing University of Information Science and Technology
文摘The interdendritic segregation along the mushy zone of directionally solidified superalloy Inconel 718 has been measured by scanning electron microscope (SEM) and energy dispersion analysis spectrometry (EDAX) techniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra) profiles along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fluid flow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 degrees C for Inconel 718 where the fluid flow most easily occurred.
文摘The features of microstructure and their influence on mechanical properties on stress-rupture as well as thermal fatigue of directionally solidified DZ38G nickel-base su- peralloy have been investigated.It has been found that the contents of carbides on grain boundaries are increased and morphology of γ'- precipitates has been changed after testing. Particularly γ'-precipitates coalesced into raft-like in morphology perpendicular to the applied stress-axis have been observed that has no detrimental effect on the stress-rupture behaviour.The tendency of σ-formation has also been discussed.The σ-phase can be avoided when the process parameters are chosen appropriately during solidification.
基金This work was supported by National Natural Science Foundation of China(Nos.51904146 and U1960203)the Doctor Start-up Fund of Liaoning Province(Grant No.2019-BS-125).
文摘The effect of carbon ranging from 0.014 to 0.071 wt.%on the solidification and microstructure of a Ni-based superalloy with high Al and Ti contents was studied.The results show that the increase in carbon addition significantly increases the size and volume fraction of MC carbides and promotes the change of their morphology from blocky to elongated shape.However,the carbon addition obviously decreases the size and volume fraction of eutectic(γ+γ′)and reducesηphase and borides formation.The change in carbide characteristics is mainly because of the increasing carbide-forming element and carbides precipitation temperature with the increase in carbon which favors the growth of them along the interdendritic liquid film.MC carbides are formed at an earlier solidification stage than the eutectic(γ+γ′).The increased carbide formation consumes more Ti,which delays and reduces the eutectic(γ+γ′)precipitation.The delay of eutectic(γ+γ′)precipitation leads to a deeper undercooling,which significantly decreases the critical Ti concentration for its precipitation.This,in turn,lowers Ti/Al ratio in residual liquids ahead of the eutectic(γ+γ′)and hence reducesηformation subsequently.B and Zr are slightly enriched in the carbides,which are considered during discussing how carbon influences the eutectic(γ+γ′)precipitation.
基金supported by the National Key Research and Development Program of China(2023YFB3712003)the National Science and Technology Major Project(J2019-VI-0018-0133)+2 种基金the AECC Independent Innovation Special Fund Project(ZZCX-2022-040)the National Natural Science Foundation of China(Nos.51701212,51771191 and 51971214)the Youth Innovation Promotion Association Project,Chinese Academy of Sciences(2020198)。
文摘Understanding the effects of various elements on solidification behavior is crucial for designing the composition ofγ’-strengthened Co-based superalloys and is fundamental for controlling the as-cast structure and formulating subsequent heat treatment processes.This research investigated the effects of replacing 1 at.%W with 1 at.%Nb or Hf elements on the solidification behavior of Co-Ni-Al-W-based superalloys.The findings revealed that substituting W with Nb and Hf resulted in a notable decrease in both the solidus temperature(TS)and liquidus temperature(TL).Specifically,the substitution of W with Nb lowered TS from 1353℃ to 1332℃ and TL from 1383℃ to 1368℃,while replacing W with Hf decreased TS from 1353℃ to 1330℃ and TL from 1383℃ to 1366℃.Moreover,both Nb and Hf element are positive segregation element,while Nb decreases and Hf increases W segregation,respectively.During the final solidification stage,the substitution of W with Nb resulted in the formation of eutectic(γ+γ’),Co_(3)Ta,and a small amount ofμ-Co7Nb6 phase,while replacing W with Hf resulted in the formation of the Laves phase andβ-CoAl phase.The solidification paths of the three alloys were confirmed based on the result of differential scanning calorimetry,isothermal solidification experiment and Thermo-calc simulation.These results offer a theoretical basis for the composition design and optimization of heat treatment processes for Co-Ni-Al-W-based superalloys.
基金financially supported by the National Natural Science Foundation of China (No.91960201)the Key Basic Research Program of Zhejiang Province (No.2020C01002)+2 种基金Zhejiang Provincial Natural Science Foundation of China (Nos.LR22E010003 and Q23E010029)the National Science and Technology Major Project of China (No.J2019-III-0008-0051)the Fundamental Research Funds for the Central Universities(No.226-2022-00050)。
文摘Design of heat treatments is related to the key technology for development of nickel-based single crystal superalloys(Ni-SXs). Based on the full understanding of the solidification characteristics, this work applies optimization design of heat treatments for a second-generation Ni-SX. Microstructure evolution and creep properties are compared in the material under conventional/standard(Std.) and optimized(Opt.) treatments. For the Std. sample,strong dendritic segregations determine inconsistent microstructure evolution in the dendritic(D) and interdendritic region(ID), while the latter serves as weak area to have the prior microcrack initiation, damaging overall performance of the alloy. The Opt. treatment applies higher homogenization temperature, leading to overall reduced segregations, while not inducing incipient melting. A lower temperature of first-step ageing is used to lower the size ofγ'particles. These help to form the more uniform microstructure in dendritic and interdendritic region and relieve the inconsistent microstructure evolution. The balanced local strength makes ID no longer as the weak area,thus restricting microcrack initiation. Great improvement of high temperature and low stress property is obtained by this progress, leading to the pronounced increase of creep rupture life under 1100 °C/140 MPa.